RGB简单人脸活体检测(Liveness Detection)

本文介绍了活体检测的概念,包括照片、视频、面具类攻击,并概述了三种主流活体检测方案:RGB相机、红外IR相机和三维深度相机。重点探讨了基于二维RGB和红外IR的活体检测,尤其是利用深度学习的RGB相机方案和结合红外热成像的红外IR方案。此外,提供了GitHub资源链接,包括用于摄像头测试的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考:
https://github.com/minivision-ai/Silent-Face-Anti-Spoofing(主要这个库)
https://github.com/computervisioneng/face-attendance-system(使用案例)

##概念: 活体检测是指针对人脸识别过程中的人脸做进一步的检测,确定要识别的对象是否是是真人。目前攻击人脸识别系统的方式可以总结为三大类,一是照片类,二是视频类、三是面具类,这三类中面具类是最难解决的攻击方式,主要由于其真实度与真人比较接近。目前主流的活体检测方案可以划分为三类,一是基于二维平面RGB相机的活体检测方案、二是基于红外IR相机的活体检测方案,三是基于三维深度相机的活体检测方案。

二维平面的RGB相机活体检测方案主要是基于深度学习实现的方案较为有效,红外IR相机的活体检测方案不仅可结合二维图形的特点,还能结合红外热成像的特点进行活体检测,比如视频类人脸在红外IR相机上是不呈像的,基于三维深度相机的活体检测方案对照片和视频类都有很好的活体检测效果,但对于三维的面具就比较吃力,需要在算法方面进行改进。

代码

https://github.com/minivision-ai/Silent-Face-Anti-Spoofing 下载下来稍微改下可以摄像头

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

loong_XL

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值