为什么叫光呆公式光_什么是良导体?为什么它不透光呢?

827dfb3ca34195a7d3d7eb3046334a8c.png

首先,我们来看一下良导体在电磁学中是如何进行定义的。

说到良导体在电磁学中的定义,不得不提到的就是介质中的

equation?tex=Maxwell 方程组,因为良导体就是通过电磁波在其中的“行为”定义的。材料中的
equation?tex=Maxwell 方程组为:

equation?tex=%5Cbegin%7Bmatrix%7D+%5Cvec%7B%5Cbigtriangledown+%7D%5Ctimes+%5Cvec%7BH%7D%3D%5Cvec%7BJ%7D%2B%5Cvarepsilon+%5Cfrac%7B%5Cpartial+%5Cvec%7BE%7D%7D%7B%5Cpartial+t%7D%3D%5Csigma%5Cvec%7BE%7D%2B%5Cvarepsilon+%5Cfrac%7B%5Cpartial+%5Cvec%7BE%7D%7D%7B%5Cpartial+t%7D%5C+%5C+%5C+%5C+%5C+%281%29%5C%5C+%5Cvec%7B%5Cbigtriangledown+%7D%5Ctimes+%5Cvec%7BE%7D%3D-%5Cmu+%5Cfrac%7B%5Cpartial+%5Cvec%7BH%7D%7D%7B%5Cpartial+t%7D%5C+%5C+%5C+%5C+%5C+%282%29%5C%5C++%5Cvec%7B%5Cbigtriangledown+%7D%5Ccdot+%5Cvec%7BD%7D%3D%5Crho+%5C+%5C+%5C+%5C+%5C+%283%29%5C%5C++%5Cvec%7B%5Cbigtriangledown+%7D%5Ccdot+%5Cvec%7BB%7D%3D0%5C+%5C+%5C+%5C+%5C+%284%29+%5Cend%7Bmatrix%7D

简单介绍一下上方程中的各个符号吧:

equation?tex=0.+%5C+%5C+%5C+%5Cvec%7B%5Cbigtriangledown+%7D%3A
equation?tex=Nabla
算符,是一个矢量算符。且由这个算符定义了几种不同的运算,在上方程中包含其中的两种,分别是散度算符
equation?tex=%5Cvec%7B%5Cbigtriangledown%7D%5Ccdot%5Cvec%7BA%7D ,和旋度算符
equation?tex=%5Cvec%7B%5Cbigtriangledown%7D%5Ctimes%5Cvec%7BA%7D ,其中
equation?tex=%5Cvec%7BA%7D 是任意矢量场。

equation?tex=1.+%5C+%5C+%5C+%5Cvec%7BH%7D%3A
磁场强度,是个矢量,量纲为
equation?tex=%7BA%5Cover+m%7D 。其与
磁感应强度
equation?tex=%5Cvec%7BB%7D 之间的关系为
equation?tex=%5Cvec%7BH%7D%3D%7B%5Cvec%7BB%7D%5Cover+%5Cmu%7D

equation?tex=2.+%5C+%5C+%5C+%5Cvec%7BB%7D%3A
磁感应强度,是个矢量,量纲为
equation?tex=%7BVs%5Cover+m%5E2%7D。其与
磁场强度
equation?tex=%5Cvec%7BH%7D 之间的关系为
equation?tex=%5Cvec%7BB%7D%3D%5Cmu%5Ccdot+%5Cvec%7BH%7D

equation?tex=3.+%5C+%5C+%5C+%5Cmu%3A
磁导率,量纲为
equation?tex=%7BVs%5Cover+Am%7D。描述的是一种材料对一个外加磁场线性反应的磁化程度。对于各向同性导体,
equation?tex=%5Cmu 是标量,而对于各向异性导体,
equation?tex=%5Cmu 是张量。

equation?tex=4.+%5C+%5C+%5C+%5Cvec%7BE%7D%3A
电场强度,量纲为
equation?tex=%7BV%5Cover+m%7D。是个矢量。其与
电通密度
equation?tex=%5Cvec%7BD%7D 之间的关系为
equation?tex=%5Cvec%7BE%7D%3D%7B%5Cvec%7BD%7D%5Cover+%5Cvarepsilon%7D

equation?tex=5.+%5C+%5C+%5C+%5Cvec%7BD%7D%3A
电通密度,是个矢量,量纲为
equation?tex=%7BAs%5Cover+m%5E2%7D。其与
电场强度
equation?tex=%5Cvec%7BE%7D 之间的关系为
equation?tex=%5Cvec%7BD%7D%3D%5Cvarepsilon%5Ccdot%5Cvec%7BE%7D

equation?tex=6.+%5C+%5C+%5C+%5Cvarepsilon%3A
介电常数,也叫电容率,量纲为
equation?tex=%7BAs%5Cover+Vm%7D。描述的是介电质响应外电场的施加而电极化的衡量。对于各向同性导体,
equation?tex=%5Cvarepsilon 是标量,而对于各向异性导体,
equation?tex=%5Cvarepsilon 是张量。

equation?tex=7.+%5C+%5C+%5C+%5Cvec%7BJ%7D%3A
总电流密度,量纲为
equation?tex=%7BA%5Cover+m%5E2%7D。是
传导电流密度
equation?tex=%5Cvec%7BJ%7D_c
运流电流密度
equation?tex=%5Cvec%7BJ%7D_v
位移电流密度
equation?tex=%5Cvec%7BJ%7D_d 之和。

equation?tex=8.+%5C+%5C+%5C+%5Csigma%3A
电导率,量纲为
equation?tex=%7BA%5Cover+Vm%7D。描述的是导体的导电能力。对于各向同性导体,
equation?tex=%5Csigma 是标量,而对于各向异性导体,
equation?tex=%5Csigma 是张量。

equation?tex=9.+%5C+%5C+%5C+%5Crho%3A
空间电荷密度,量纲为
equation?tex=%7BAs%5Cover+m%5E3%7D

equation?tex=10.+%5C+%5C+%5C+%5Cfrac%7B%5Cpartial+%7D%7B%5Cpartial+t%7D%3A
对时间的偏微分

其中:

equation?tex=A (安培);
equation?tex=V (伏特);
equation?tex=s (秒);
equation?tex=m (米)。

有关于

equation?tex=0%5Csim7 以及介质中的
equation?tex=Maxwell 方程组的更多知识,大家可以参看下面的文章,我在其中都做了详细介绍,这里由于篇幅问题就不在赘述了:
zdr0:深度科普---电磁波(一):真空中的Maxwell方程组​zhuanlan.zhihu.com
f575ebad7cdb43708eb65febd36c2afa.png
zdr0:深度科普---电磁波(二):材料中的 Maxwell方程组和电磁场的边值条件​zhuanlan.zhihu.com
f575ebad7cdb43708eb65febd36c2afa.png

我们在各向同性的介质中继续下面的讨论。现在对方程

equation?tex=%282%29 使用旋度算符的恒等式:

equation?tex=%5Cvec%7B%5Cbigtriangledown+%7D%5Ctimes%28%5Cvec%7B%5Cbigtriangledown+%7D%5Ctimes%5Cvec%7BA%7D%29%3D%5Cvec%7B%5Cbigtriangledown+%7D%28%5Cvec%7B%5Cbigtriangledown+%7D%5Ccdot+%5Cvec%7BA%7D%29-%5Cvec%7B%5Cbigtriangledown+%7D%5E2%5Cvec%7BA%7D

其中

equation?tex=%5Cvec%7BA%7D 是任意矢量场,即有方程
equation?tex=%282%29 的左边等于:

equation?tex=%5Cvec%7B%5Cbigtriangledown+%7D%5Ctimes%28%5Cvec%7B%5Cbigtriangledown+%7D%5Ctimes%5Cvec%7BE%7D%29%3D%5Cvec%7B%5Cbigtriangledown+%7D%28%5Cvec%7B%5Cbigtriangledown+%7D%5Ccdot+%5Cvec%7BE%7D%29-%5Cvec%7B%5Cbigtriangledown+%7D%5E2%5Cvec%7BE%7D%5C+%5C+%5C+%5C+%5C+%285%29

并设空间电荷密度

equation?tex=%5Crho%3D0 ,则方程
equation?tex=%283%29 变为:

equation?tex=%5Cvec%7B%5Cbigtriangledown+%7D%5Ccdot+%5Cvec%7BD%7D%3D0%5Cxrightarrow%5B+%5D%7B%5Cvec%7BD%7D%3D%5Cvarepsilon%5Ccdot%5Cvec%7BE%7D%7D%5Cvec%7B%5Cbigtriangledown+%7D%5Ccdot+%28%5Cvarepsilon%5Ccdot%5Cvec%7BE%7D%29%3D0%5CLeftrightarrow%5Cvarepsilon%5Ccdot%5Cvec%7B%5Cbigtriangledown+%7D%5Ccdot+%5Cvec%7BE%7D%3D0%5Cxrightarrow%5B+%5D%7B%5Cvarepsilon%5Cne0%7D%5Cvec%7B%5Cbigtriangledown+%7D%5Ccdot+%5Cvec%7BE%7D%3D0%5C+%5C+%5C+%5C+%5C+%286%29

将方程

equation?tex=%286%29 代入到方程
equation?tex=%285%29 中有:

equation?tex=%5Cvec%7B%5Cbigtriangledown+%7D%5Ctimes%28%5Cvec%7B%5Cbigtriangledown+%7D%5Ctimes%5Cvec%7BE%7D%29%3D%5Cvec%7B%5Cbigtriangledown+%7D%28%5Cvec%7B%5Cbigtriangledown+%7D%5Ccdot+%5Cvec%7BE%7D%29-%5Cvec%7B%5Cbigtriangledown+%7D%5E2%5Cvec%7BE%7D%5Cxrightarrow%5B+%5D%7B%5Cvec%7B%5Cbigtriangledown+%7D%5Ccdot+%5Cvec%7BE%7D%3D0%7D-%5Cvec%7B%5Cbigtriangledown+%7D%5E2%5Cvec%7BE%7D%5C+%5C+%5C+%5C+%5C+%287%29

方程

equation?tex=%282%29 的右边等于:

equation?tex=%5Cvec%7B%5Cbigtriangledown+%7D%5Ctimes%28%5Cvec%7B%5Cbigtriangledown+%7D%5Ctimes%5Cvec%7BE%7D%29%3D-%5Cvec%7B%5Cbigtriangledown+%7D%5Ctimes%5Cmu+%5Cfrac%7B%5Cpartial+%5Cvec%7BH%7D%7D%7B%5Cpartial+t%7D%3D-%5Cmu%5Cfrac%7B%5Cpartial+%7D%7B%5Cpartial+t%7D%28%5Cvec%7B%5Cbigtriangledown+%7D%5Ctimes%5Cvec%7BH%7D%29%5C+%5C+%5C+%5C+%5C+%288%29

然后将方程

equation?tex=%281%29 代入方程
equation?tex=%287%29 得到:

equation?tex=%5Cvec%7B%5Cbigtriangledown+%7D%5Ctimes%28%5Cvec%7B%5Cbigtriangledown+%7D%5Ctimes%5Cvec%7BE%7D%29%3D-%5Cmu%5Cfrac%7B%5Cpartial+%7D%7B%5Cpartial+t%7D%28%5Csigma%5Cvec%7BE%7D%2B%5Cvarepsilon+%5Cfrac%7B%5Cpartial+%5Cvec%7BE%7D%7D%7B%5Cpartial+t%7D%29%3D-%28%5Cmu%5Csigma%5Cfrac%7B%5Cpartial+%5Cvec%7BE%7D%7D%7B%5Cpartial+t%7D%2B%5Cmu%5Cvarepsilon+%5Cfrac%7B%5Cpartial%5E2+%5Cvec%7BE%7D%7D%7B%5Cpartial+t%5E2%7D%29%5C+%5C+%5C+%5C+%5C+%289%29

而方程

equation?tex=%288%29 应与方程
equation?tex=%289%29 相吻合,即得到:

equation?tex=%5Cvec%7B%5Cbigtriangledown+%7D%5E2%5Cvec%7BE%7D-%5Cmu%5Csigma%5Cfrac%7B%5Cpartial+%5Cvec%7BE%7D%7D%7B%5Cpartial+t%7D-%5Cmu%5Cvarepsilon+%5Cfrac%7B%5Cpartial%5E2+%5Cvec%7BE%7D%7D%7B%5Cpartial+t%5E2%7D%3D0%5C+%5C+%5C+%5C+%5C+%2810%29

方程

equation?tex=%2810%29 就是在空间电荷密度
equation?tex=%5Crho%3D0 时的介质中的电场的波动方程。利用类似的方法,也可以得到介质中磁场的波动方程:

equation?tex=%5Cvec%7B%5Cbigtriangledown+%7D%5E2%5Cvec%7BH%7D-%5Cmu%5Csigma%5Cfrac%7B%5Cpartial+%5Cvec%7BH%7D%7D%7B%5Cpartial+t%7D-%5Cmu%5Cvarepsilon+%5Cfrac%7B%5Cpartial%5E2+%5Cvec%7BH%7D%7D%7B%5Cpartial+t%5E2%7D%3D0%5C+%5C+%5C+%5C+%5C+%2811%29

若这里的电场和磁场都是简谐波,即:

equation?tex=%5Cvec%7BE%7D%3D%5Cvec%7BE%7D_0%5Ccdot+%5Cexp%28j%28%5Comega+t-%5Cvec%7Bk%7D%5Ccdot%5Cvec%7Br%7D%29%29%5C+%5C+%5C+%5C+%5C+%2812%29

equation?tex=%5Cvec%7BH%7D%3D%5Cvec%7BH%7D_0%5Ccdot+%5Cexp%28j%28%5Comega+t-%5Cvec%7Bk%7D%5Ccdot%5Cvec%7Br%7D%29%29%5C+%5C+%5C+%5C+%5C+%2813%29

则两者对时间的偏导数为:

equation?tex=%5Cvec%7BE%7D_t%3Dj%5Comega%5Ccdot+%5Cvec%7BE%7D_0%5Ccdot+%5Cexp%28j%28%5Comega+t-%5Cvec%7Bk%7D%5Ccdot%5Cvec%7Br%7D%29%29%5Cxrightarrow%5B+%5D%7B%2812%29%7Dj%5Comega%5Ccdot+%5Cvec%7BE%7D%5C+%5C+%5C+%5C+%5C+%2814%29

equation?tex=%5Cvec%7BE%7D_%7Btt%7D%3D%28j%5Comega%29%5E2%5Ccdot+%5Cvec%7BE%7D_0%5Ccdot+%5Cexp%28j%28%5Comega+t-%5Cvec%7Bk%7D%5Ccdot%5Cvec%7Br%7D%29%29%5Cxrightarrow%5B+%5D%7B%2812%29%7D-%5Comega%5E2%5Ccdot+%5Cvec%7BE%7D%5C+%5C+%5C+%5C+%5C+%2815%29

equation?tex=%5Cvec%7BH%7D_t%3Dj%5Comega%5Ccdot+%5Cvec%7BH%7D_0%5Ccdot+%5Cexp%28j%28%5Comega+t-%5Cvec%7Bk%7D%5Ccdot%5Cvec%7Br%7D%29%29%5Cxrightarrow%5B+%5D%7B%2813%29%7Dj%5Comega%5Ccdot+%5Cvec%7BH%7D%5C+%5C+%5C+%5C+%5C+%2816%29

equation?tex=%5Cvec%7BH%7D_%7Btt%7D%3D%28j%5Comega%29%5E2%5Ccdot+%5Cvec%7BH%7D_0%5Ccdot+%5Cexp%28j%28%5Comega+t-%5Cvec%7Bk%7D%5Ccdot%5Cvec%7Br%7D%29%29%5Cxrightarrow%5B+%5D%7B%2813%29%7D-%5Comega%5E2%5Ccdot+%5Cvec%7BH%7D%5C+%5C+%5C+%5C+%5C+%2817%29

将式

equation?tex=%2814%29%5Csim%2817%29 代入到式
equation?tex=%2810%29%2C%2811%29 中得到:

equation?tex=%5Cvec%7B%5Cbigtriangledown+%7D%5E2%5Cvec%7BE%7D-%5Cmu%5Csigma%5Cfrac%7B%5Cpartial+%5Cvec%7BE%7D%7D%7B%5Cpartial+t%7D-%5Cmu%5Cvarepsilon+%5Cfrac%7B%5Cpartial%5E2+%5Cvec%7BE%7D%7D%7B%5Cpartial+t%5E2%7D%5Cxrightarrow%5B+%5D%7B%2814%29%2C%2815%29%7D%5Cvec%7B%5Cbigtriangledown+%7D%5E2%5Cvec%7BE%7D-j%5Comega%5Ccdot%5Cmu%5Csigma+%5Cvec%7BE%7D%2B%5Comega%5E2%5Cmu%5Cvarepsilon%5Ccdot+%5Cvec%7BE%7D%3D0%5C+%5C+%5C+%5C+%5C+%2818%29

equation?tex=%5Cvec%7B%5Cbigtriangledown+%7D%5E2%5Cvec%7BH%7D-%5Cmu%5Csigma%5Cfrac%7B%5Cpartial+%5Cvec%7BH%7D%7D%7B%5Cpartial+t%7D-%5Cmu%5Cvarepsilon+%5Cfrac%7B%5Cpartial%5E2+%5Cvec%7BH%7D%7D%7B%5Cpartial+t%5E2%7D%5Cxrightarrow%5B+%5D%7B%2816%29%2C%2817%29%7D%5Cvec%7B%5Cbigtriangledown+%7D%5E2%5Cvec%7BH%7D-j%5Comega%5Ccdot%5Cmu%5Csigma+%5Cvec%7BH%7D%2B%5Comega%5E2%5Cmu%5Cvarepsilon%5Ccdot+%5Cvec%7BH%7D%3D0%5C+%5C+%5C+%5C+%5C+%2819%29

现在设:

equation?tex=%5Cgamma%5E2%3D-%28%5Comega%5E2%5Cmu%5Cvarepsilon-j%5Comega%5Cmu%5Csigma%29 ,则方程
equation?tex=%2818%29%2C%2819%29 可以进一步化为:

equation?tex=%5Cvec%7B%5Cbigtriangledown+%7D%5E2%5Cvec%7BE%7D-%5Cgamma%5E2%5Cvec%7BE%7D%3D0%5C+%5C+%5C+%5C+%5C+%2820%29

equation?tex=%5Cvec%7B%5Cbigtriangledown+%7D%5E2%5Cvec%7BH%7D-%5Cgamma%5E2%5Cvec%7BH%7D%3D0%5C+%5C+%5C+%5C+%5C+%2821%29

现在我们主要来研究一下电场。我们看到方程

equation?tex=%281%29 ,现在将其改写一下:

equation?tex=%5Cvec%7B%5Cbigtriangledown+%7D%5Ctimes+%5Cvec%7BH%7D%3D%5Csigma%5Cvec%7BE%7D%2B%5Cvarepsilon+%5Cfrac%7B%5Cpartial+%5Cvec%7BE%7D%7D%7B%5Cpartial+t%7D%5Cxrightarrow%5B+%5D%7B%2814%29%7D%5Csigma%5Cvec%7BE%7D%2Bj%5Comega%5Cvarepsilon+%5Cvec%7BE%7D%3Dj%5Comega+%5Cvec%7BE%7D%28%5Cvarepsilon-j%7B%5Csigma%5Cover+%5Comega%7D%29%3A%3Dj%5Comega%5Cvarepsilon%5Ee%5Cvec%7BE%7D

其中,

equation?tex=%5Cvarepsilon%5Ee%3A%3D%5Cvarepsilon-j%7B%5Csigma%5Cover+%5Comega%7D%3A%3D%5Cvarepsilon%27-j%5Cvarepsilon%27%27 称为
复介电常数。记住这个定义,之后的讨论中会用到。

回到之前

equation?tex=%5Cgamma 的表达式
equation?tex=%5Cgamma%5E2%3D%28j%5Comega%5Cmu%5Csigma-%5Comega%5E2%5Cmu%5Cvarepsilon%29 ,开根后可以求得
equation?tex=%5Cgamma

equation?tex=%5Cgamma%3D%5Csqrt%7B%5Cgamma%5E2%7D%3D%5Csqrt%7B%28j%5Comega%5Cmu%5Csigma-%5Comega%5E2%5Cmu%5Cvarepsilon%29%7D%3D%5Csqrt%7Bj%5Comega%5Cmu%28%5Csigma%2Bj%5Comega%5Cvarepsilon%29%7D

可见,传播常数

equation?tex=%5Cgamma 是个复数,所以,为了求出其实部和虚部,我们不妨设
equation?tex=%5Cgamma%3A%3D%5Calpha%2Bj%5Cbeta ,则有:

equation?tex=%5Cgamma%5E2%3D%28%5Calpha%2Bj%5Cbeta%29%5E2%3D%28j%5Comega%5Cmu%5Csigma-%5Comega%5E2%5Cmu%5Cvarepsilon%29

展开后通过比较系数解得:

equation?tex=%5Calpha%3D%5Comega%5Csqrt%7B%7B%5Cmu%5Cvarepsilon%5Cover2%7D%28%5Csqrt%7B1%2B%7B%5Csigma%5E2%5Cover%5Comega%5E2%5Cvarepsilon%5E2%7D%7D-1%29%7D%5C+%5C+%5C+%5C+%5C+%2822%29

equation?tex=%5Cbeta%3D%5Comega%5Csqrt%7B%7B%5Cmu%5Cvarepsilon%5Cover2%7D%28%5Csqrt%7B1%2B%7B%5Csigma%5E2%5Cover%5Comega%5E2%5Cvarepsilon%5E2%7D%7D%2B1%29%7D%5C+%5C+%5C+%5C+%5C+%2823%29

其中,

equation?tex=%5Calpha 称为
导电介质中的衰减常数,表示的是传播方向单位长度上的波的幅度的衰减量,
equation?tex=%5Cbeta 称为
导电介质中的相移常数

下面,我们来了解一下什么是损耗角正切

equation?tex=%5Ctan%5Cdelta

在之前,我们已经给出了导体的复数形式的介电常数,其损耗是由

equation?tex=%5Csigma 引起的,有损介质的复介电常数为:

equation?tex=%5Cvarepsilon%5Ee%3D%5Cvarepsilon%27-j%5Cvarepsilon%27%27

介质损耗是由于介质被极化时的滞后效应所引起的,其具体表现是

equation?tex=%5Cvarepsilon%27%27 不为零。

当导体损耗和介质损耗均存在时,复介电常数

equation?tex=%5Cvarepsilon%5Ee 为:

equation?tex=%5Cvarepsilon%5Ee%3D%5Cvarepsilon%27-j%28%5Cvarepsilon%27%27%2B%7B%5Csigma%5Cover%5Comega%7D%29%5C+%5C+%5C+%5C+%5C+%2824%29

而损耗正切角的定义是式

equation?tex=+%2824%29 的虚部与实部之比,即:

equation?tex=%5Ctan%5Cdelta%3A%3D%7B%5Cvarepsilon%27%27%2B%7B%5Csigma%5Cover%5Comega%7D%5Cover%5Cvarepsilon%27%7D

对于导体,

equation?tex=%5Cvarepsilon%27%27%5Cll+%7B%5Csigma%5Cover%5Comega%7D ,于是有:
equation?tex=%5Ctan%5Cdelta%3D%7B%5Csigma%5Cover%5Comega%5Cvarepsilon%27%7D

对于介质,

equation?tex=%5Cvarepsilon%27%27%5Cgg+%7B%5Csigma%5Cover%5Comega%7D ,于是有:
equation?tex=%5Ctan%5Cdelta%3D%7B%5Cvarepsilon%27%27%5Cover%5Cvarepsilon%27%7D

有了损耗角正切之后,我们就可以来对介质进行分类了:

理想导体:

equation?tex=%5Ctan%5Cdelta%3D%7B%5Csigma%5Cover%5Comega%5Cvarepsilon%27%7D%5Crightarrow%5Cinfty

良导体:

equation?tex=%5Ctan%5Cdelta%3D%7B%5Csigma%5Cover%5Comega%5Cvarepsilon%27%7D%5Cgg1

低损耗介质:

equation?tex=%5Ctan%5Cdelta%3D%7B%5Cvarepsilon%27%27%5Cover%5Cvarepsilon%27%7D%5Cll1

理想介质:

equation?tex=%5Ctan%5Cdelta%3D%7B%5Cvarepsilon%27%27%5Cover%5Cvarepsilon%27%7D%3D0

习惯上,又常把

equation?tex=%5Cvarepsilon%27 写为
equation?tex=%5Cvarepsilon 。所以,对于良导体,我们再看回到式
equation?tex=%2822%29%2C%2823%29

equation?tex=%5Calpha%3D%5Comega%5Csqrt%7B%7B%5Cmu%5Cvarepsilon%5Cover2%7D%28%5Csqrt%7B1%2B%7B%5Csigma%5E2%5Cover%5Comega%5E2%5Cvarepsilon%5E2%7D%7D-1%29%7D%5Cxrightarrow%5B+%5D%7B%7B%5Csigma%5Cover%5Comega%5Cvarepsilon%7D%5Cgg1%7D%5Comega%5Csqrt%7B%7B%5Cmu%5Csigma%5Cover+2%5Comega%7D%7D%5Cxrightarrow%5B+%5D%7B%5Comega%3D2%5Cpi+f%7D%5Csqrt%7B%5Cpi%5Cmu%5Csigma+f%7D%5C+%5C+%5C+%5C+%5C+%5C+%2824%29

equation?tex=%5Cbeta%3D%5Comega%5Csqrt%7B%7B%5Cmu%5Cvarepsilon%5Cover2%7D%28%5Csqrt%7B1%2B%7B%5Csigma%5E2%5Cover%5Comega%5E2%5Cvarepsilon%5E2%7D%7D%2B1%29%7D%5Cxrightarrow%5B+%5D%7B%7B%5Csigma%5Cover%5Comega%5Cvarepsilon%7D%5Cgg1%7D%5Comega%5Csqrt%7B%7B%5Cmu%5Csigma%5Cover+2%5Comega%7D%7D%5Cxrightarrow%5B+%5D%7B%5Comega%3D2%5Cpi+f%7D%5Csqrt%7B%5Cpi%5Cmu%5Csigma+f%7D%5C+%5C+%5C+%5C+%5C+%5C+%2825%29

其中,

equation?tex=f 是电波的
频率。也就是说, 在良导体中,衰减常数
equation?tex=%5Calpha 和相移常数
equation?tex=%5Cbeta 相等

ad0202499d6b54cb903763b4c94632ff.gif
介质中的电磁波和真空中的电磁波的对比。图片来源:自己画的。

介绍完良导体之后,我们就要来说说它为何不透光了。

导电介质中的电磁波的特点之一就是其具有传输衰减,波从表面进入导电介质越深,场的幅度就越小,能量就越小,即能量趋向于表面,这就是所谓的趋肤效应

趋肤效应所对应的另一个概念就是趋肤深度,其定义是指当波从表面进入介质中一段距离而使得其幅度减小到原来的

equation?tex=%7B1%5Cover+e%7D 时的深度就称为趋肤深度
equation?tex=%5Cdelta ,其值为:

equation?tex=%5Cdelta%3D%7B1%5Cover%5Calpha%7D%5C+%5C+%5C+%5C+%5C+%5C+%2826%29

其中,

equation?tex=%5Calpha 是式
equation?tex=%2822%29 定义的衰减常数,将式
equation?tex=%2822%29 代入到式
equation?tex=%2826%29 中有:

equation?tex=%5Cdelta%3D%7B1%5Cover%5Comega%5Csqrt%7B%7B%5Cmu%5Cvarepsilon%5Cover2%7D%28%5Csqrt%7B1%2B%7B%5Csigma%5E2%5Cover%5Comega%5E2%5Cvarepsilon%5E2%7D%7D-1%29%7D%7D%5C+%5C+%5C+%5C+%5C+%5C+%2827%29

对于良导体,由式

equation?tex=%2824%29 可知:

equation?tex=%5Cdelta%3D%7B1%5Cover%5Csqrt%7B%5Cpi%5Cmu%5Csigma+f%7D%7D%5C+%5C+%5C+%5C+%5C+%5C+%2828%29

这便是良导体的趋肤深度公式了。式

equation?tex=%2828%29 表明,波的频率越高或介质的导电能力越强,趋肤深度
equation?tex=%5Cdelta 越小。在良导体中,其电导率
equation?tex=%5Csigma 极大,电磁波一旦进入其中就会被很快的衰减,即趋肤深度
equation?tex=%5Cdelta 很小,这就是良导体不透光的原因了。除非该良导体的厚度要小于其趋肤深度
equation?tex=%5Cdelta
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值