微波-基础知识

本文详细探讨了规则金属波导中的电磁波传播特性,包括波数的概念及其在自由空间和双导体中的计算,以及截止波长和相移常数在矩形波导中的影响。波导波长和相速的讨论揭示了波导内电磁波传播的特殊性质,相速可能超过光速,而波导波长会大于真空波长。此外,还涉及到了群速、衰减常数和波阻抗等关键参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

规则金属波导:

  1. 波数(与波导无关):自由空间或者双导体(TEM波)上单位长度平面波有多少弧度

    k= ω μ ϵ = 2 π λ , μ \omega\sqrt{\mu\epsilon}=\frac{2\pi}{\lambda},\mu ωμϵ =λ2π,μ表示磁导率,另一个表示材料介电常数,真空光速 c 2 = 1 μ 0 ϵ 0 c^2=\frac{1}{\mu_0\epsilon_0} c2=μ0ϵ01,材料光速v= c μ ϵ \frac{c}{\mu\epsilon} μϵc

    截止波数(与波导有关)为 k c T E 10 = 2 π 2 a , 其 中 2 a 为 矩 形 波 导 最 大 的 截 止 波 长 k_{cTE10}=\frac{2\pi}{2a},其中2a为矩形波导最大的截止波长 kcTE10=2a2π2a

  2. 截止波长(与波导有关): λ c T E 10 = 2 a , λ c T E 11 = 2 a ∗ 2 b ( 2 a ) 2 + ( 2 b ) 2 \lambda_{cTE10}=2a,\lambda_{cTE11}=\frac{2a*2b}{\sqrt{(2a)^2+(2b)^2}} λcTE10=2a,λcTE11=(2a)2+(2b)2 2a2b

  3. 相移常数(与波导有关):单位长度传输线有多少弧度

    一般来说是这样: β = 2 π λ ⟶ w = 2 π T \beta=\frac{2\pi}{\lambda}\longrightarrow w=\frac{2\pi}{T} β=λ2πw=T2π

    T可描述为震荡的信号相位变化 2 π 2\pi 2π所需时间长度

    λ \lambda λ可描述为震荡的信号相位变化 2 π 2\pi 2π所需距离长度

    描述的都是信号相位随距离的变化情况,在相移常数后因为波导的缘故,需乘上 1 − ( λ 2 a ) 2 \sqrt{1-(\frac{\lambda}{2a})^2} 1(2aλ)2 ,写作 2 π λ 1 − ( λ 2 a ) 2 \frac{2\pi}{\lambda}\sqrt{1-(\frac{\lambda}{2a})^2} λ2π1(2aλ)2 ,这个因子是小于1的,因此乘上之后相移常数会减小,然后在计算波导波长(不是真空波长)时,波长才会增大,我称之为波导相移常数和波导工作波长(区别于工作波长)

  4. 波导波长(与波导有关) λ g = 2 π β \lambda_g=\frac{2\pi}{\beta} λg=β2π:在波导中传输的电磁波,在某个瞬间沿传输线方向上的相位差2 π \pi π或者是等相位点之间的距离,即相速度*周期时间=波导波长,而在波导中相速度会大于光速,因此波导波长会大于真空波长(工作波长)

    其中需要强调的是工作波长指的是微波源发射的电磁波,可以认为是我们为了满足波长要小于截止波长(频率大于截止频率)时的自由空间波长,而这个工作波长将进入波导中,在波导(单导体无TEM模)中两侧壁来回反射,包含了纵向分量和横向分量,形成了大于真空波长的波导波长

  5. 相速(与波导有关)

    比光速更快的速度v= c 1 − ( λ 2 a ) 2 \frac{c}{\sqrt{1-(\frac{\lambda}{2a})^2}} 1(2aλ)2 c

  6. 群速(与波导有关)

    比真空光速慢一点的速度,也称为群速度色散

  7. 衰减常数

    传播常数 γ \gamma γ的实部 α \alpha α,虚部为相移常数 β \beta β

  8. 波阻抗 Z w = 120 π 1 − ( λ λ c ) 2 Z_w=\frac{120\pi}{\sqrt{1-(\frac{\lambda}{\lambda_c}})^2} Zw=1(λcλ )2120π

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值