【Hugging Face】下载开源大模型步骤

Mac M1

1、国内镜像站

模型基本都可以在国内镜像站 https://hf-mirror.com/ 下载。

在这里插入图片描述

部分 Gated Repo 需登录申请许可,需先前往 Hugging Face 官网登录、申请许可,在官网这里获取 Access Token 后回镜像站用命令行下载。

在这里插入图片描述

在这里插入图片描述

2、注册登陆 Hugging Face

2.1 注册账号

  • 输入 邮箱、密码,点击 Next

    在这里插入图片描述

  • 输入 Username、Full name,勾选协议,点击 Create Account

    在这里插入图片描述

  • 邮箱会收到一封验证邮件,点击链接即可

    在这里插入图片描述

2.2 登陆官网

输入 邮箱、密码,点击 Login

在这里插入图片描述

3、创建 token

  • 点击头像,点击 setting

    在这里插入图片描述

  • 点击 Access Token,点击 Create new token

    在这里插入图片描述

  • 选择Read,点击 create token

    在这里插入图片描述

    三种Token类型各自的适用场景:

    适用场景示例
    Fine-grained如果您希望更细致地控制权限,例如仅允许特定操作(如读取、写入或微调),则可以选择“Fine-grained”权限。这种类型适合需要精细管理访问权限的用户,特别是在团队协作或项目中。在与外部组织合作时,您可以创建一个仅允许访问该组织下特定模型的fine-grained token,而不必分享所有写权限。
    Read如果您只需要访问模型进行推理或下载模型,而不打算进行任何修改或训练,选择“Read”权限即可。这是大多数用户的常见选择,因为它允许您使用模型而不需要对其进行更改。用于下载私有模型或进行推理时,确保不会对模型进行任何修改。
    Write如果您打算对模型进行修改、上传新的模型权重或更新现有模型,则需要选择“Write”权限。这通常适用于开发者或研究人员,他们需要将自己的工作成果上传到Hugging Face平台。开发者在训练新模型后,需要将其上传到Hugging Face Hub以供他人使用。
  • Copy

    在这里插入图片描述

4、下载 huggingface-cli

# 安装依赖
pip install -U huggingface_hub

# 设置环境变量
echo 'export HF_ENDPOINT=https://hf-mirror.com' >> ~/.zshrc
source ~/.zshrc

5、下载模型

# 下载模型(注意修改 local-dir 与 token 的值)
huggingface-cli download --resume-download meta-llama/Llama-3.2-1B --local-dir /Users/xxx/Models_llm/meta-llama/ --local-dir-use-symlinks False --token **** 

# 下载数据集
huggingface-cli download --repo-type dataset --resume-download wikitext --local-dir wikitext

可以添加 --local-dir-use-symlinks False 参数禁用文件软链接,这样下载路径下所见即所得,详细解释请见 教程

9、资料

### 如何在Hugging Face平台上下载大型预训练模型 #### 使用官方界面下载 当希望获取特定的预训练模型时,可以在[Hugging Face](https://huggingface.co/models)网站上通过关键词搜索找到目标模型。一旦定位到了所需的模型页面,在该网页中有一个名为“files and versions”的选项卡[^1]。点击此标签可以查看模型文件列表以及不同版本的信息。 #### 解决中国大陆访问难题 考虑到在中国大陆可能存在的网络连接障碍,有专门针对这一情况提出的解决方案。为了能够顺利地从Hugging Face下载大模型而不依赖于代理服务,存在多种方法可供尝试。这些建议旨在简化下载流程并提高效率,即使是在面对较大规模的数据集或模型时也能保持流畅体验[^2]。 #### 利用Git LFS工具 对于那些在网络状况不佳环境下工作的开发者而言,采用Git Large File Storage (LFS)可能是更好的选择之一。首先需要安装配置好Git LFS环境;其次按照文档指导完成必要的初始化操作后就可以利用它来处理来自Hugging Face的大容量资源了。具体步骤如下: 1. 安装`git-lfs`插件; 2. 初始化本地仓库支持LFS特性; 3. 登录至个人账户以获得权限认证; 4. 执行克隆命令拉取远程存储库中的内容。 ```bash # 步骤一:安装 Git LFS 插件 $ git lfs install # 步骤二:初始化项目目录下的 .git 文件夹启用 LFS 功能 $ cd /path/to/your/project && git init && git lfs track "*.bin" # 步骤三:登录 HuggingFace 账号以便后续操作具有相应权限 $ huggingface-cli login # 步骤四:执行 clone 命令获取指定路径下所有受保护对象 $ git clone https://huggingface.co/path-to-model-repo.git ``` 以上过程展示了怎样借助Git LFS技术实现稳定可靠的模型加载方式[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值