cuda、cudnn和tensorrt的关系

cuda、cudnn和tensorrt的关系

CUDA是NVIDIA推出的用于自家GPU的并行计算框架,也就是说CUDA只能在NVIDIA的GPU上运行,而且只有当要解决的计算问题是可以大量并行计算的时候才能发挥CUDA的作用。CUDA的主要作用是连接GPU 和 应用程序,方便用户通过 CUDA 的 API 调度 GPU 进行计算。

cuDNN(CUDA Deep Neural Network library):是NVIDIA打造的针对深度神经网络的加速库,是一个用于深层神经网络的GPU加速库。它能将模型训练的计算优化之后,再通过 CUDA 调用 GPU 进行运算.

当然你也可直接使用 CUDA,而不通过 cuDNN ,但运算效率会低好多。因为你的模型训练计算没有优化。

TensorRT是英伟达针对自家平台做的加速包,只负责模型的推理(inference)过程,一般不用TensorRT来训练模型的,而是用于部署时加速模型运行速度。

TensorRT主要做了这么两件事情,来提升模型的运行速度。
1、TensorRT支持INT8和FP16的计算。深度学习网络在训练时,通常使用 32 位或 16 位数据。TensorRT则在网络的推理时选用不这么高的精度,达到加速推断的目的。
2、 TensorRT对于网络结构进行了重构,把一些能够合并的运算合并在了一起,针对GPU的特性做了优化。现在大多数深度学习框架是没有针对GPU做过性能优化的,而英伟达,GPU的生产者和搬运工,自然就推出了针对自己GPU的加速工具TensorRT。一个深度学习模型,在没有优化的情况下,比如一个卷积层、一个偏置层和一个reload层,这三层是需要调用三次cuDNN对应的API,但实际上这三层的实现完全是可以合并到一起的,TensorRT会对一些可以合并网络进行合并。

### 安装配置 CUDAcuDNN TensorRT #### 准备工作 为了确保顺利安装,在开始之前需确认已正确安装 NVIDIA 显卡驱动程序。对于 Ubuntu 18.04 可通过如下命令完成驱动安装: ```bash sudo apt update && sudo apt install nvidia-515 ``` 这一步骤至关重要,因为后续组件依赖于稳定工作的 GPU 驱动环境[^4]。 #### 下载并安装 CUDA Toolkit 访问[NVIDIA 开发者网站](https://developer.nvidia.com/cuda-downloads),选择适合的操作系统版本(如 Linux),架构(通常是 x86_64),发行版(例如 Ubuntu)。按照提示获取对应版本的本地安装文件(runfile)链接,并执行下载操作。之后可以通过以下方式启动安装过程: ```bash wget https://developer.download.nvidia.com/compute/cuda/11.3.0/local_installers/cuda_11.3.0_465.19.01_linux.run sudo sh cuda_11.3.0_465.19.01_linux.run --override ``` 此方法允许更灵活地控制安装选项,特别是当遇到特定硬件兼容性问题时[^2]。 #### cuDNN 的集成 一旦成功部署了 CUDA 工具链,则可继续处理 cuDNN 库。通常情况下,建议从官方资源库直接取得最新发布的 tarball 文件形式分发包。解压后将其内容复制到现有 CUDA 路径下即可实现无缝衔接。具体步骤参见文档指导[^1]。 #### TensorRT 设置 最后是针对深度学习推理优化而设计的高性能计算平台——TensorRT。同样推荐前往官方网站寻找适用于当前系统的预编译二进制档。遵循提供的指引完成必要的路径设置与环境变量定义,从而保障各模块间能够协同作业[^3]。 #### 多版本管理 考虑到不同项目可能基于各异的 CUDA 版本构建,掌握一套有效的多版本管理体系显得尤为重要。利用 `update-alternatives` 或者手动调整 `$PATH` `$LD_LIBRARY_PATH` 来达到快速切换的目的。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值