题目
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?
示例 1:
输入:m = 3, n = 7
输出:28
示例 2:
输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
- 向右 -> 向下 -> 向下
- 向下 -> 向下 -> 向右
- 向下 -> 向右 -> 向下
示例 3:
输入:m = 7, n = 3
输出:28
示例 4:
输入:m = 3, n = 3
输出:6
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/unique-paths
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路
要么向下走,要么向又走,既然两个方向的变量,就应该需要两个for循环来控制了
每次开始出发的坐标都是(0,0),终点坐标为(m-1,n-1)
- dp数组定义及其下标含义
用dp[i][j]表示从起始位置走到dp[i][j]不同路径数量,只要是从左面过来的(dp[i - 1][j])或者从右面过来的(dp[i][j - 1]),就符合要求 - dp公式
dp[i][j] = dp[i - 1][j] + dp[i][j - 1]; - dp数组初始化
dp[0][0] = 1; 这是因为如果终点就是起点,那就一条路径,本来没初始化这个值,结果有一个m=n=1的情况过不了;
dp[i][0] = 1; 这两种情况下,只是在一条直线上向右或者向下移动,不管走了多远,路径都是一条
dp[0][j] = 1;
代码
class Solution {
public int uniquePaths(int m, int n) {
//建立的二维数组多一行一列,因为下标从0开始,这样二维数组可以记录dp[0][0]到dp[m][n]的所有值,方便返回dp[m-1][n-1];
int[][] dp = new int[m+1][n+1];
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
dp[0][0] = 1;
dp[i][0] = 1;
dp[0][j] = 1;
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m-1][n-1];
}
}