动态规划【不同路径】

题目

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

示例 1:

输入:m = 3, n = 7
输出:28
示例 2:

输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。

  1. 向右 -> 向下 -> 向下
  2. 向下 -> 向下 -> 向右
  3. 向下 -> 向右 -> 向下
    示例 3:

输入:m = 7, n = 3
输出:28
示例 4:

输入:m = 3, n = 3
输出:6

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/unique-paths
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

思路

要么向下走,要么向又走,既然两个方向的变量,就应该需要两个for循环来控制了
每次开始出发的坐标都是(0,0),终点坐标为(m-1,n-1)

  1. dp数组定义及其下标含义
    用dp[i][j]表示从起始位置走到dp[i][j]不同路径数量,只要是从左面过来的(dp[i - 1][j])或者从右面过来的(dp[i][j - 1]),就符合要求
  2. dp公式
    dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
  3. dp数组初始化
    dp[0][0] = 1; 这是因为如果终点就是起点,那就一条路径,本来没初始化这个值,结果有一个m=n=1的情况过不了;
    dp[i][0] = 1; 这两种情况下,只是在一条直线上向右或者向下移动,不管走了多远,路径都是一条
    dp[0][j] = 1;

代码

class Solution {
    public int uniquePaths(int m, int n) {
    //建立的二维数组多一行一列,因为下标从0开始,这样二维数组可以记录dp[0][0]到dp[m][n]的所有值,方便返回dp[m-1][n-1];
        int[][] dp = new int[m+1][n+1];
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <= n; j++) {
                dp[0][0] = 1;
                dp[i][0] = 1;
                dp[0][j] = 1;
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
            }
        }
        return dp[m-1][n-1];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值