用于计算机断层扫描中胰腺导管腺癌检测的全自动深度学习框架

简单总结

基于图像的早期诊断对于改善胰腺导管腺癌 (PDAC) 患者的预后至关重要,但即使对于经验丰富的放射科医生来说也具有挑战性。人工智能有可能通过利用大量数据自动检测小 (<2 cm) 病灶来协助早期诊断。在这项研究中,最先进的、用于医疗分割的自配置框架 nnUnet 用于开发一个全自动管道,用于在对比增强计算机断层扫描上检测和定位 PDAC 病灶,重点是小病灶。此外,还评估了将周围解剖结构(已知与临床诊断相关)整合到深度学习模型中的影响。开发的自动框架在外部公开可用的测试集中进行了测试,结果表明,最先进的深度学习可以检测小的 PDAC 病变并从解剖信息中受益。

抽象

早期发现可改善胰腺导管腺癌 (PDAC) 的预后,但具有挑战性,因为病变通常较小且在对比增强计算机断层扫描 (CE-CT) 上定义不清。深度学习可以促进 PDAC 诊断;然而,目前的模型仍然无法识别小 (<2 cm) 病灶。在这项研究中,最先进的深度学习模型被用来开发一个用于 PDAC 检测的自动框架,重点是小病灶。此外,还研究了整合周围解剖结构的影响。来自一组 119 名经病理证实的 PDAC 患者和一组 123 名无 PDAC 患者的 CE-CT 扫描用于训练用于自动病灶检测和分割 (nnUnet_T) 的 nnUnet。训练了另外两个 nnUnet 来研究解剖学整合的影响:(1) 分割胰腺和肿瘤 (nnUnet_TP),以及 (2) 分割胰腺、肿瘤和多个周围解剖结构 (nnUnet_MS)。使用外部公开可用的测试集来比较三个网络的性能。nnUnet_MS取得了最佳性能,整个测试集的受试者工作特征曲线下面积为 0.91,<2 cm 肿瘤的受试者工作特征曲线下面积为 0.88,表明最先进的深度学习可以检测小的 PDAC 并从解剖学信息中受益。

1. 引言

胰腺导管腺癌 (PDAC) 是胰腺癌最常见的形式,其 5 年相对生存率仅为 10.8% [1,2]。胰腺癌的发病率正在增加,预计到 2030 年,胰腺癌将成为西方社会癌症相关死亡的第二大原因 [2,3]。在疾病早期诊断的患者,肿瘤较小(大小< 2 cm)且经常可切除,其 3 年生存率 (82%) 远高于肿瘤较大的晚期诊断患者 (17%) [4]。不幸的是,肿瘤很少在早期发现,大约 80-85% 的患者在诊断时表现为不可切除或转移性疾病 [1]。鉴于这些统计数据,很明显 PDAC 的早期诊断对于改善患者预后至关重要,因为逆转分期分布将使总生存期增加一倍以上,而无需进一步改善治疗 [5]。
早期 PDAC 检测具有挑战性,因为大多数患者直到疾病晚期才出现特异性症状,而且以目前的技术对一般人群进行筛查的成本高昂 [5,6]。此外,PDAC 肿瘤在计算机断层扫描 (CT) 扫描中难以显示,而计算机断层扫描 (CT) 扫描是最常用的初始诊断方式,因为病变呈现不规则的轮廓和边界不清 [5]。这在疾病初期变得更加重大,因为病变不仅小 (<2 cm),而且通常具有等衰减性,即使是经验丰富的放射科医生也很容易忽视它们 [7]。最近一项重建诊断前 PDAC 中 CT 变化进展的研究表明,可以在临床 PDAC 诊断前 18 至 12 个月回顾性观察到可疑变化。然而,放射科医生识别这些变化并因此将患者转诊进行进一步检查的敏感性仅为 44% [8]。
人工智能 (AI) 可以通过利用大量成像数据来帮助放射科医生进行早期 PDAC 检测。深度学习模型,更具体地说是卷积神经网络 (CNN),是一类特别适用于图像分析的 AI 算法,在基于图像的各类癌症诊断中显示出很高的准确性 [9,10,11]。CNN 将扫描作为输入,并通过执行一系列顺序卷积和池化作自动提取诊断任务的相关特征。
临床相关的计算机辅助诊断系统应该能够检测癌症的存在,并在阳性情况下能够在输入图像中定位病变,几乎不需要用户交互。
最近,深度学习模型开始被研究用于自动 PDAC 诊断 [12,13,14,15,16,17]。然而,大多数研究仅将输入图像二元分类为癌性或非癌性,而没有同时进行病变定位。此外,大多数出版物并未关注较小的早期病灶,只有一项研究报告了大小< 2 cm 肿瘤的模型性能 [15]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Z深度求索

喜欢就支持一下,谢谢老板!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值