基于spacedesk的扩展屏的优化

在上一篇文章中,详细介绍了安卓设备的作为笔记本电脑扩展屏的步骤,接下来将详细介绍扩展屏的优化步骤,降低延迟、拒绝卡顿

安卓设备和电脑是通过网络连接,操作速度受WiFi信号速度影响,如果使用USB网络共享,带宽增大,延迟则会很低。

①首先,用USB数据线连接安卓设备和PC端(用USB3.0的接口)。

②在安卓设备的设置中开启USB网络共享。

这个步骤网上教程很多,都是打开安卓设备的设置中的USB网络共享开关。

然而,华为畅享平板2里并没有这个选项(nova Pro 7 5G里也没有),于是我就在平板的设置里找了个比较像的选项打开了。

③在PC端选择连接到安卓设备共享的网络。

我对这个步骤的理解是,安卓设备把自己连接到的WiFi分享给PC端。(我不是IT专业的)

蓝框是原来连接的WiFi,红框是安卓设备共享的网络(就是那个WiFi)。

④然后在安卓设备中打开spacedesk软件,可以看到要连接的PC端换了一个IP地址(上一篇文章的图,借用一下),然后点击它,就可以作为扩展屏连接到PC端。

⑤至此,数据传输效率就大大提高了,几乎没有延迟和卡顿。

⑥为了更加优化,可以在安卓端选择退出扩展屏的连接,然后点击右上角的三个小点,进入Settings(设置)。

⑦选择第三个选项Quality/Performance。

⑧调节这几个项,下图是我调的,是为了尽可能不延迟、不卡顿。

⑨再将安卓设备作为扩展屏与PC端连接,会发现除了鼠标有极小的延迟外(毕竟不论什么数据传输也是要时间的啊),几乎没有卡顿,操作流畅。至此,扩展屏的优化完成。

### 使用 LangChain 搭建本地知识库实战教程 #### 准备工作环境 为了创建一个基于 LangChain本地知识库,首先需要安装必要的 Python 库。这可以通过执行以下命令完成: ```bash pip install langchain pip install "langserve[all]" ``` 对于更全面的功能支持,可以考虑安装额外的扩展模块[^4]。 #### 下载项目源码 如果打算使用特定版本或分支的 `langchain-ChatGLM` 作为基础,则可通过 Git 命令克隆仓库到本地环境中: ```bash git clone https://kgithub.com/imClumsyPanda/langchain-ChatGLM.git ``` 此步骤并非强制性的,取决于个人需求和偏好[^3]。 #### 加载与处理文档资料 构建知识库的第一步是从各种来源收集所需的信息资源,并将其转换成适合进一步分析的形式。通常情况下,这些原始材料会被拆分成较小的部分以便更好地管理和索引。例如,在处理纯文本文件时,可以根据章节、段落或其他逻辑单元来进行切割[^1]。 #### 创建向量表示形式 一旦完成了初步的数据预处理之后,下一步就是利用像百度千帆这样的嵌入服务将每一片段转化为高维空间中的点——即所谓的“嵌入”。这样做不仅有助于提高检索效率,而且还能捕捉到不同片段之间的潜在关联性[^5]。 ```python from langchain_community.embeddings import QianfanEmbeddingsEndpoint embeddings_model = QianfanEmbeddingsEndpoint() text_embeddings = embeddings_model.encode(["这里是你想要编码的文字"]) ``` #### 存储至向量数据库 经过上述两阶段的工作后,现在可以把得到的结果存放到专门设计用来高效查询相似项的结构里去——也就是所谓的向量数据库。这类工具允许用户通过输入一段描述来找到最接近它的其他记录[^2]。 ```python import pinecone pinecone.init(api_key="YOUR_API_KEY", environment="us-west1-gcp") index_name = 'example-index' if index_name not in pinecone.list_indexes(): pinecone.create_index(index_name, dimension=768) index = pinecone.Index(index_name) vectors_to_insert = [(id_, vector) for id_, vector in enumerate(text_embeddings)] index.upsert(vectors=vectors_to_insert) ``` #### 查询接口实现 最后一步是定义好对外的服务端口,使得外部应用能够方便地调用内部功能。一般而言,会采用 RESTful API 或者 GraphQL 这样的协议标准来封装业务逻辑。 ```python from fastapi import FastAPI from pydantic import BaseModel app = FastAPI() class QueryRequest(BaseModel): query: str @app.post("/query") async def handle_query(request: QueryRequest): # 处理请求... pass ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

魔都五fa肉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值