pandas 数据分析 相关性_数据分析知识点总结(干货)

整理了下之前自学的《数据分析为专业课程》的知识点:

主要分为五个大点:Python基础,数据处理,numpy,pandas及matplotlib

1、Python基础分为:数据类型(数组(列表),字典,集合,元组,字符串),函数,逻辑结构,文件

1.1、数据类型

90b2efce587ff7aadcabc2f924f7e5de.png
数组(列表)知识要点

70b2e02b137ad036579773ab76d0ac28.png
字典及集合知识要点

c81d6ff5f27bf0625abe181b0971f798.png
元组及字符串知识要点

1.2、函数、逻辑结构、文件

0a0e8ca30259319a6b40833532ee1cbe.png
函数、逻辑结构、文件知识要点

2、数据操作(数据清洗及处理,数据特征分析,数学建模)

2.1、数据清洗及处理(缺失值处理、异常值处理、归一化、离散化)

be2185e7a8c5cf3d20222f2d48fac281.png
数据清洗及处理知识要点

2.2、数据特征分析(分布分析、对比分析、统计分析、帕累托分析、正态检验)

52b38ad00101a69a2edcbb2a32be64df.png
分布分析知识要点

60b7994de33e1c608ab1e314014aab49.png
对比分析知识要点

ab5e118699af63a7eb291b6ed1013bcc.png
统计分析知识要点

969b4152d5b9445811e71a2f3614aa59.png
帕累托分析、正态检验和相关性分析知识要点

2.3、数学建模(五种经典的数据分析涉及的算法)

98a83c502b3fe5e7dccb5122d154f2e2.png
数学建模知识要点

3、numpy

b23d3d0f514e8f62859794da4771e765.png

4、pandas(Series,DataFrame,时间序列)

aaaa217b5167b0ea47eb7415719a703c.png
Series创建、索引及切片、基本技巧

cfef2f659fb118f3fe0817cf3f46df68.png
DataFrame创建、索引及切片、基本技巧

09172a8b53961715d3b82cd61398aee0.png
Series和DataFrame的基本计算方法

d24fe5e9aa58fe80d8d58b999b525a83.png
时间模块知识要点

6804e3b74fe3946157ad9696b97e78ad.png
文本数据知识要点

5、Matplotlib

17174abc960def8d738b3c4001ca54d5.png

看到这里的都是真爱啦,希望能给大家带来一些帮助。觉得有用的请大家帮忙点个赞啦

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值