2x麦克劳林公式_麦克劳林公式:记忆方法和应用规则

在考研数学中,泰勒公式是一个非常重要的考点,尤其在无穷级数和求极限部分,因此十分有必要将几个常用的麦克劳林展开式熟记于心。本文为读者介绍了麦克劳林公式的简单记忆方法,以及泰勒公式在应用时应当注意的规则。

d92e3c8727c267e13c43f5e601feb533.png

一、函数展开成泰勒级数的充要条件

设f(x)在x0的某个领域内具有各阶导数,则f(x)在该邻域内能展开成泰勒级数的充分必要条件是当阶数无穷大时f(x)的泰勒公式中的余项趋向0,此时函数f(x)可以展开为泰勒级数:

cacd20b1b7c1a7cb1aa1ed57b8e474ed.png

二、麦克劳林级数

函数在x0=0处的泰勒级数称为麦克劳林级数,也称为麦克劳林展开式。常用的麦克劳林展开式有如下:

1ee1cdd291428e5bee4a38501dea7354.png

图片来源:张宇《高等数学十八讲》

三、常用的麦克劳林展开式的记忆技巧

以上几个展开式可以函数图像的“变化率”为依据分两类(左边图像增长趋势平缓,右边有点指数爆炸的感觉):

a991c85f22ffe36db803025b38e2cd8e.png

趋势平缓的,其展开式一定为“+、-”相间;

爆炸性趋势的,其展开式均为“+”。

左边那部分:

241d2c8b973094155addbbdcfbcfc859.png

右边那部分:

cae0862d9bd658e42d1f620d31514a71.png

1908d3c91fcdcce22858d7c1e46d7a63.png

四、麦克劳林公式的应用规则

在求无穷小极限的时候,往往有一个顾虑:到底该展开到几阶?

        答:展开到“分子分母”同阶,即展开泰勒公式化简后分子分母最低次幂的幂数相同。

        另一个万能展开法是展开到五阶,基本上秒杀99%考研极限题。但这样做缺点是合并同类项时的计算量有点大。

8e91e76c7cba5bfc0e31e3a3d616981a.png

eb0b8f00b439760a63e36b2822836acd.png

下面我们看几道经典例题巩固一下:

b85f91cb76ca3283691598c681fdf3ad.png

答案:n=2,a=7

52b9ac1fc1dfea87fe6d2c85658d723c.png

835165fca39a097d436c3924b8083e0f.png

答案:1/6 。

ae62b705504c4c31921d813db06a3c8a.png

8eceaf6639db176e4487829a8d732e7a.png

答案:如上。

参考文献

[1]同济大学数学系主编,《高等数学》(上册)(第七版)[M],高等教育出版社,2014(07): 137-140.

[2]5个题彻底搞懂泰勒公式应该展开到多少阶

https://www.bilibili.com/video/BV1E7411E7k1/?spm_id_from=trigger_reload

[3]麦克劳林公式快速记忆方法

https://www.bilibili.com/video/BV18J411h7U1

*作者注:接下来公众号会更新一些考研数学中的实用小技巧,希望是能让一切繁琐问题都有其猥琐解法

此章已毕,鄙人欲休,阁下若觉本文实用,不妨点之【在看】享于左右益友!
  • 9
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是一个利用仿函数实现e^x近似计算的示例代码: ```cpp #include <iostream> #include <cmath> class ExpApproximator { public: double operator()(double x) const { double result = 1.0; // 初始化为e^0 = 1 double term = 1.0; // 麦克劳级数的每一项 for (int i = 1; i <= N; i++) { term *= x / i; result += term; } return result; } private: static const int N = 10; // 麦克劳级数的项数 }; int main() { ExpApproximator approximator; double x = 2.0; double e_to_x = std::exp(x); double approx = approximator(x); std::cout << "e^" << x << " = " << e_to_x << std::endl; std::cout << "Approximation with " << ExpApproximator::N << " terms: " << approx << std::endl; return 0; } ``` 在上述代码中,我们定义了一个名为ExpApproximator的仿函数类,它的operator()函数接受一个参数x,返回e^x的近似值。我们使用麦克劳林公式来实现这个近似计算,即将e^x表示为一个级数的和:e^x = 1 + x/1! + x^2/2! + x^3/3! + ... + x^n/n!。我们使用一个循环来计算这个级数的前N项,其中N是一个常量,可以在类的私有部分进行定义。在循环中,我们对每一项进行累加,并使用一个变量term来保存每一项的值,这个变量在每次循环中都乘以x/i,即将x的幂次加1并除以i。最后,我们返回累加后的结果,即e^x的近似值。 在主函数中,我们首先创建了一个ExpApproximator对象,然后测试了它对于x=2的近似计算结果。我们还使用了标准库的exp函数来计算e^x的精确值,并将结果输出到控制台上。最后,我们输出了ExpApproximator的近似结果,以及使用的级数项数。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值