欢迎关注我的公众号 [极智视界],获取我的更多笔记分享
大家好,我是极智视界,本文解读一下 基于 Transformer 的开放世界目标检测器 OW-DETR。
开放世界目标检测 (OWOD) 是一个具有挑战性的计算机视觉问题,其任务是检测一组已知的目标类别,同时还能够识别未知的目标。此外,模型还必须逐步学习在训练中加入的新类别。与标准的目标检测不同,OWOD 对于在潜在的未知目标上生成高质量的候选建议、将未知目标从背景中分离出来 以及 检测不同的未知目标 提出了重大挑战。本文中,作者提出了一种新的基于端到端 transformer 的框架 OW-DETR,用于开放世界目标检测。提出的 OW-DETR 包括三个专门的组件,即注意力驱动的伪标签、新类别分类 以及 目标性评分 来明确上述的 OWOD 挑战。作者提出的 OW-DETR 显式编码多尺度上下文信息,具有较少的归纳偏置,使知识能够从已知的类别转移到未知类别,并能更好地区分未知目标和背景。在 MS-COCO 和 PASCAL VOC 两个基准上进行了综合实验,进行了广泛的消融实验证明了所提方法的优点。此外,提出的模型就 MS-COCO 的未知类别召回率而言,还优于最近引入 OWOD 方法的 ORE,召回率提高了 1.8% ~ 3.3%。而在增量目标检测中,在 PASCAL VOC 上要优于所有的 state-of-the-art 方法。