OW-DETR | 基于 Transformer 的开放世界目标检测器

OW-DETR 是一种基于 Transformer 的开放世界目标检测框架,旨在解决已知和未知目标的检测问题。通过注意力驱动的伪标注、新类别分类和目标性评分,OW-DETR 显著提高了对未知类别的检测能力。与传统方法相比,OW-DETR 依靠多尺度上下文编码和减少归纳偏置,以更好地捕捉目标间的上下文关系。在 MS-COCO 和 PASCAL VOC 上的实验表明,OW-DETR 在开放世界目标检测和增量目标检测任务上优于现有的 state-of-the-art 方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欢迎关注我的公众号 [极智视界],获取我的更多笔记分享

  大家好,我是极智视界,本文解读一下 基于 Transformer 的开放世界目标检测器 OW-DETR
在这里插入图片描述

  开放世界目标检测 (OWOD) 是一个具有挑战性的计算机视觉问题,其任务是检测一组已知的目标类别,同时还能够识别未知的目标。此外,模型还必须逐步学习在训练中加入的新类别。与标准的目标检测不同,OWOD 对于在潜在的未知目标上生成高质量的候选建议将未知目标从背景中分离出来 以及 检测不同的未知目标 提出了重大挑战。本文中,作者提出了一种新的基于端到端 transformer 的框架 OW-DETR,用于开放世界目标检测。提出的 OW-DETR 包括三个专门的组件,即注意力驱动的伪标签新类别分类 以及 目标性评分 来明确上述的 OWOD 挑战。作者提出的 OW-DETR 显式编码多尺度上下文信息,具有较少的归纳偏置,使知识能够从已知的类别转移到未知类别,并能更好地区分未知目标和背景。在 MS-COCO 和 PASCAL VOC 两个基准上进行了综合实验,进行了广泛的消融实验证明了所提方法的优点。此外,提出的模型就 MS-COCO 的未知类别召回率而言,还优于最近引入 OWOD 方法的 ORE,召回率提高了 1.8% ~ 3.3%。而在增量目标检测中,在 PASCAL VOC 上要优于所有的 state-of-the-art 方法。

  论文地址:https://arxiv.org/abs/2112.01513

  代码地址:https://github.com/akshitac8/OW-DETR

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

极智视界

你的支持 是我持续创作的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值