可观测性PHP秩判据,线性系统的可控性和可观测性.ppt

线性系统的可控性和可观测性

第三章 线性系统的可控性与可观测性;3.1 可控性和可观测性的定义 ;3.1 可控性和可观测性的定义 ;例3-1:给定系统的状态空间描述为;二. 可控性定义;2.系统可控;3.系统不完全可控;4.状态可达与系统可达;三.可观测性定义;2.系统不可观测;3. 2 线性定常连续系统的可控性判据(※);证:充分性:已知W(0, t1)为非奇异,欲证系统为完全可控,采用构造法来证明。对任一非零初始状态x0可构造控制u(t)为: ;必要性:已知系统完全可控,欲证W(0, t1) 非奇异。反设W(0, t1)为奇异,即存在某个非零向量 ,使;因系统完全可控,根据定义对此非零向量 应有 ;2.秩判据(※);3)推论2:矩阵指数函数可表示为A的(n-1)阶多项式;故;4)秩判据(※);证明:充分性:已知rankS=n,欲证系统完全可控,采用反证法。反设系统为不完全可控,则有: ;由于α≠0,所以上式意味着S为行线性相关的,即rankS

判断其能控性。;;补充:可控性判别矩阵 (※):;例3-8:用可控性判别矩阵 判别例3-7所示系统的可控性。 ;3.PBH秩判据(※);证明: ,为多项式矩阵,且对复数域上除λi以外的所有s都有det(sI-A)≠0,即rank[sI-A]=n,进而有rank[sI-A B]=n,所以只要证明 即可。;进而可得:;例3-9:已知线性定常系统状态方程为;特征方程: ;2)当 时,有 ;4.PBH特征向量判据;证明:必要性:已知系统完全可控,反设存在一个向量α≠0,使式 成立,则有;5.约当规范型判据;例3-12:已知线性定常系统的对角线规范型为;2)约当规范型系统(有重特征值)可控性判别;例3-13:已知约当规范型系统如下:;例3-14:证明如下系统总是完全可控的。;二、输出可控性;2.输出可??性判据;判断系统的状态可控性和输出可控性。;三 线性时变系统的能控性判据;2 秩判据 线性时变系统在时刻 为完全能控的充分条件是,存在一个有限时刻 ,使下式成立

;3. 3 线性定常连续系统的可观测性判据(※);2. 秩判据(※);例3-16:判断下列系统的可观性:;例3-17:证明如下系统总是完全可观测的。;补充:可观测性判别矩阵 (※);例3-18:判断例3-16所示系统2)的可观性。;3. PBH秩判据 (※);4. PBH特征向量判据;5. 约当规范型判据;例3-19:已知线性定常系统的对角线规范型为;2)约当规范型系统(有重特征值)可观测性判别;例3-20:约当标准型系统如下:;二.子系统组合的可控性和可观测性(补充);解:子系统并联组合后的系统;可观性判别矩阵;三 线性时变系统的能观测性判据;2 秩判据 线性时变系统在时刻 为完全能观的充分条件是,存在一个有限时刻 ,使下式成立

;3.4 对偶原理;二 对偶原理;补充题:确定使下列系统状态完全能控的待定参数的a,b,c取值范围;习题9-20 已知系统的传递函数为;

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值