det是什么意思矩阵_什么是dx——无穷小量的原理

本文探讨了微分形式不变性,解释了dx作为无穷小量的含义,指出全微分公式的重要性。通过对话形式,解释了dx与dy的关系,旨在帮助读者建立对无穷小量的直观理解,特别强调了dx和dy不只是独立的无穷小量,而是可以通过全微分公式相互联系。此外,文章还介绍了全微分在几何和物理问题中的应用,如弧长元素、面/体积元素等,并给出了多元函数换元方法的例子。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

bb70d041bf1b50a1386a8abadd24ab7b.png

高等数学是多数大学生进入大学的第一门课程,但有趣的是:很多大学生在学完高等数学后,并没有理解到什么是dx。往往对dx的印象停留在「一个无穷小的量」、「要多小有多小」、「比任意ε都小」等这样的初步直观印象。当然,这些说法的确都是正确的,但这无法解决无穷小量间的关系问题

例如:如果问为什么dy=f'(x)dx?如果把dx和dy理解为两个独立而不相关的无穷小量,这一现象都变得无法理解。而如果无法理解到dx与dy的关系,对于后期多元函数的各种诡异而变化莫测的换元方法就更加难以理解了。光凭借死记硬背,或许应付高数的考试是足够的,但是在笔者看来,这不能算作学会了高数。从这个意义上,或许物理学系的对无穷小量dx理解得最透彻,因为他们做题时要一直对dx进行各种换元与分析。

在本文中,笔者会以讨论的形式,不断提出问题,以与读者讨论的方式来研究分析这些问题,最终探讨出一个答案。关于这些结论中的部分,笔者是有严谨的证明。但是本文的目的是培养对无穷小量dx的直观认识,故笔者将略去这些证明。对于少数笔者认为有必要让读者了解的关键步骤,笔者会单独提出来讲思路,但尽可能地不涉及具体的证明细节。

总之,本文的目的是培养读者对无穷小量的直觉希望读者在阅读本文时,不要将本文当作教科书生硬地“学习”,而是要想象笔者站在你的面前,在与读者“探讨”问题。全文第一部分我将采用对话体,笔者自称「我」,对话对象称为「小羽咲」(这是设定,不要吐槽啦)。请读者自行代入「小羽咲视角」。

当然,由于本文是面向各个知识段的读者的,在全文开始之前,我将在下面罗列一些有必要掌握的定理,当读者遇到没有学过的内容时,可以参考以下说明进行补充阅读


以下是公式定理说明表(已经了解这些定理的读者,可以直接跳到下一环节)


本文最理想的读者是学习完高等数学的《多元函数的重积分》及其之前的所有内容的读者,对于没有修习这些内容的读者,下面将列举你们所必要了解的一些内容/定理[1]

(已经了解这些定理的读者,可以直接跳到下一环节)

一、对于没有修习《高等数学(下)》的读者,你们需要了解的有:

1、全微分公式

即:

equation?tex=dz%3D%5Cfrac%7B%5Cpartial+z%7D%7B%5Cpartial+x%7Ddx%2B%5Cfrac%7B%5Cpartial+z%7D%7B%5Cpartial+y%7Ddy

(笔者注1:事实上,本质上,隐函数求导公式可由该公式导出。在本文中,由于该公式具有非常好的对称美性质,我们将十分频繁地应用该公式

(笔者注2:该公式具有很好的对称美性质,我们可以将该公式推广到n维情形,对于n维情形的该公式,我们也称之为「全微分公式」)

2、全微分形式不变性

即:在全微分公式

equation?tex=dz%3D%5Cfrac%7B%5Cpartial+z%7D%7B%5Cpartial+u%7Ddu%2B%5Cfrac%7B%5Cpartial+z%7D%7B%5Cpartial+v%7Ddv 的基础上——

如果u,v是中间变量,即有

equation?tex=u%3D%5Cvarphi%28x%2Cy%29
equation?tex=v%3D%5Cpsi%28x%2Cy%29 的换元关系,则有:

equation?tex=dz%3D%5Cfrac%7B%5Cpartial+z%7D%7B%5Cpartial+u%7Ddu%2B%5Cfrac%7B%5Cpartial+z%7D%7B%5Cpartial+v%7Ddv%3D%5Cfrac%7B%5Cpartial+z%7D%7B%5Cpartial+x%7Ddx%2B%5Cfrac%7B%5Cpartial+z%7D%7B%5Cpartial+y%7Ddy

(笔者注1:通俗地说,就是:不管把什么当成自变量,dz都可以表示为这一组自变量(下以x为例)对应的

equation?tex=%5Cfrac%7B%5Cpartial+z%7D%7B%5Cpartial+x%7Ddx 的求和)

(笔者注2:换言之:「全微分形式不变性」保证了——dz可以被写成对应的全微分,这一点与你选择的变量是自变量或中间变量无关

(笔者注3:高阶微分不再具有微分形式不变性,这一点与「一元高阶微分不具有形式不变性」类似)

3、隐函数求导法则(偏导)

即:

equation?tex=%5Cfrac%7B%5Cpartial+z%7D%7B%5Cpartial+x%7D%3D-%5Cfrac%7BF_x%7D%7BF_z%7D

(其中

equation?tex=F_x 代表F对x的偏导)

这一推导可以类比二元隐函数方程求导记忆——

我们通过对

equation?tex=F%28x%2Cy%29%3D0 左右全微分可以知道:
equation?tex=F_xdx%2BF_ydy%3D0

即:

equation?tex=%5Cfrac%7Bdy%7D%7Bdx%7D%3D-%5Cfrac%7BF_x%7D%7BF_y%7D

同理,多元(未知数大于等于2)函数,不过是把d换成了∂罢了。

即:

equation?tex=%5Cfrac%7B%5Cpartial+y%7D%7B%5Cpartial+x%7D%3D-%5Cfrac%7BF_x%7D%7BF_y%7D%5Cquad+%E5%85%B6%E4%B8%ADF%28x%2Cy%2Cz%29%3D0

二、对于没有修习《高等数学(上)》的读者,你们需要了解的有:

1、复合函数的链式求导法则

即:

equation?tex=%5Cfrac%7Bdy%7D%7Bdx%7D%3D%5Cfrac%7Bdy%7D%7Bdu%7D%5Cfrac%7Bdu%7D%7Bdx%7D

(笔者注:这也暗示了微分的一大特性:微分可以被当成实体参与运算)

2、各种求导法则

例如乘积求导法则、除法求导法则等

3、求偏导

所谓求偏导,即把其他变量当成常数,只对指定变量求导,符号用

equation?tex=%5Cfrac%7B%5Cpartial+%3F%7D%7B%5Cpartial+%3F%7D 表示。如
equation?tex=%5Cfrac%7B%5Cpartial+z%7D%7B%5Cpartial+x%7D 表示z对x求偏导。

举例[2]A:

equation?tex=%5Cfrac%7B%5Cpartial+%28xy%29%7D%7B%5Cpartial+x%7D%3Dy ,即把y当成常数,y x相当于斜率为y的一次函数。

B:

equation?tex=%5Cfrac%7B%5Cpartial+%28xyzuvw%29%7D%7B%5Cpartial+x%7D%3Dyzuvw ,不管你什么花里胡哨的,后面的统统当成常数处理,只对x求导。

C、

equation?tex=%5Cfrac%7B%5Cpartial+e%5E%7Bxy%7D%7D%7B%5Cpartial+x%7D%3Dye%5E%7Bxy%7D ,即把y看成常数,我们知道
equation?tex=e%5E%7Bkx%7D 求导是
equation?tex=ke%5E%7Bkx%7D ,同理把k换成y即可

4、隐函数求导法则

我们知道任意函数

equation?tex=y%3Df%28x%29 总能被看作方程
equation?tex=F%28x%2Cy%29%3Dy-f%28x%29%3D0

更广义地,当y=f(x)不容易被显式地写出时,就可以将其写成一个方程

equation?tex=F%28x%2Cy%29%3D0 的形式,我们称之为隐函数方程。

(例如想要绕开反三角函数,就可以把

equation?tex=y%3D%5Carctan+x 写成
equation?tex=%5Ctan+y%3Dx ,这就确定了一个方程
equation?tex=F%28x%2Cy%29%3D%5Ctan+y-x%3D0

这样确定了一个隐函数,如果把

equation?tex=F%28x%2Cy%29%3D0 人为添加一个维度z,即看作
equation?tex=z%3DF%28x%2Cy%29 且z=0,那么对左右全微分,左面z=0微分显然为0,右面微分按照「全微分公式」(见
「公式定理说明表」一、1)即为
equation?tex=%5Cfrac%7B%5Cpartial+F%7D%7B%5Cpartial+x%7Ddx%2B%5Cfrac%7B%5Cpartial+F%7D%7B%5Cpartial+y%7Ddy%3D0 ,导数自然是
equation?tex=%5Cfrac%7Bdy%7D%7Bdx%7D%3D-%5Cfrac%7B%5Cfrac%7B%5Cpartial+F%7D%7B%5Cpartial+x%7D%7D%7B%5Cfrac%7B%5Cpartial+F%7D%7B%5Cpartial+y%7D%7D

(笔者注:看起来这里写的隐函数求导法则与《高等数学(上)》不同,但实质上是相同的。至于为什么,这就留待读者自行思考了)


以下是正文部分

全文采取对话体,请脑补「笔者」为「我」,脑补「读者」为「小羽咲」或「羽咲」


第一部分:从全微分不变性说起


:小羽咲,你知道

equation?tex=%5Cfrac%7B%5Cpartial+%28x%2By%29%7D%7B%5Cpartial+x%7D 等于多少吗?

(注:

equation?tex=%5Cpartial 是偏微分算符,意思是分子对分母求偏导,所谓求偏导即把其他变量看成常量,对分母求导,具体说明见
「公式定理说明表」二、3

羽咲:这个还不简单吗?把y当成常数,这个就是最简单的求导,显然为1啊!

:(露出阴险的笑容)

1204317b440cbdb36fceaf65ed8aa4d5.png

羽咲:(有一种阴谋的气息)

8b009d3ce7b29cf4b8650d4e7b53c3f6.png

:谁说的y相对x是常数了呢,你被我坑啦!

羽咲:???(黑人问号)

:其实我认为

equation?tex=y%3Dx%2Bu ,其中u与x无关,这样
equation?tex=%5Cfrac%7B%5Cpartial+%28x%2By%29%7D%7B%5Cpartial+x%7D%3D%5Cfrac%7B%5Cpartial+%282x%2Bu%29%7D%7B%5Cpartial+x%7D%3D2 。哈哈哈,略略略……(发出欠打的笑声)

羽咲:怎么可以这样,x、y不是垂直的吗?垂直的话两者肯定无关啊!

:想不到吧,哈哈哈哈哈(欠打ing)

a56da98b493f2ac1d8f1934fe0a3917a.png
配图配错了,懒得改了,意思就是x轴与y轴不一定垂直,在这里面我画成了x+y=z嘤嘤嘤

羽咲:お兄ちゃん、バカ!!!!(并将我拉入黑名单)

:等等!羽咲别走!我再也不抬杠了!本当に申し訳ありません、お優し羽咲様(小仓朝日附体)

………………(一天后)

羽咲:哼(一脸不爽)!这个问题你得好好给我讲清楚,不然就……(比手刀姿势)

0b4fefea439db423a929313c5d0216ec.png

:嗯嗯,我保证再也不抬杠了(本当に申し訳ありません、お優し羽咲様×2)

:回到正题,我们都知道全微分公式

equation?tex=dz%3D%5Cfrac%7B%5Cpartial+z%7D%7B%5Cpartial+x%7Ddx%2B%5Cfrac%7B%5Cpartial+z%7D%7B%5Cpartial+y%7Ddy ,那么自然地,如果
equation?tex=z%3Dx%2By ,就有
equation?tex=dz%3Dd%28x%2By%29%3Ddx%2Bdy

这样我们就能自然得出此时:

equation?tex=%5Cfrac%7B%5Cpartial+z%7D%7B%5Cpartial+x%7D%3D1 了。

(注:全微分公式见「公式定理说明表」一、1

羽咲:你昨天不还说

equation?tex=%5Cfrac%7B%5Cpartial+%28x%2By%29%7D%7B%5Cpartial+x%7D%3D2 吗?怎么现在又变成1了?

:对,这就是问题的根源——事实上,

equation?tex=%5Cfrac%7B%5Cpartial+%28x%2By%29%7D%7B%5Cpartial+x%7D
指代对象不明的。回忆求偏导的意义:把其他变量当成常数,对分母求导。那么问题来了——什么叫「其他变量」呢?

羽咲:这不显然x是变量,y是其他变量吗?你上面求全微分不也这么写的吗?

:对,在上面我举的例子里,的确是指代对象明确的——因为我写了

equation?tex=%5Cmathrm%7Bd%7Dx
equation?tex=%5Cmathrm%7Bd%7Dy ,自然是默认x与y是两个无关的变量。但是如果没有指明的话,类比上面我举的例子,我可以令y=x+u,其中u是与x无关的变量。那么同理,为什么一定是x与y无关呢?

羽咲:那应该怎么办才好呢?

:回忆《线性代数》里面的知识,我们可以把向量组

equation?tex=%5Cvec+x%3D%5C%7B1%2C0%2C0%5C%7D
equation?tex=%5Cvec+y%3D%5C%7B0%2C1%2C0%5C%7D
equation?tex=%5Cvec+z%3D%5C%7B0%2C0%2C1%5C%7D 当做空间的一组「基」,那么我们也可以把向量组
equation?tex=%5Cvec+u%3D%5C%7B1%2C2%2C3%5C%7D
equation?tex=%5Cvec+v%3D%5C%7B4%2C5%2C6%5C%7D
equation?tex=%5Cvec+w%3D%5C%7B3%2C2%2C1%5C%7D 当做空间的一组「基」。这样的选择有无限多种,还记得需要且仅需要满足一个什么条件吗?

羽咲:是线性无关对吧。或者说一组基中任意一个向量都不能由另一个向量线性表出。我记得这好像是一个被叫做「秩(rank)」的东西,只要变换矩阵的「行列式(det)」不为0,那么就线性无关。反之则线性相关。

:对的,事实上,这个变换矩阵被称为「雅可比矩阵(Jacobian)」,不过考虑到篇幅,我对此按下不表。

羽咲:那既然你之前和我抬杠,那我现在也要杠一波。假如我设定基底为

equation?tex=%5Cmathrm%7Bd%7D%28%5Cfrac+yx%29
equation?tex=%5Cmathrm%7Bd%7D%28x%29 ,那么
equation?tex=%5Cmathrm%7Bd%7D%28x%2By%29 全微分等于多少呢?

equation?tex=%5Cmathrm%7Bd%7D%28x%2By%29%3D%5Cmathrm%7Bd%7D%5Bx%281%2B%5Cfrac+yx%29%5D

把x看成变量,则

equation?tex=%5Cfrac%7B%5Cpartial+%5Bx%281%2B%5Cfrac+yx%29%5D%7D%7B%5Cpartial+x%7D%3D1%2B%5Cfrac+yx

把y/x看成变量,则

equation?tex=%5Cfrac%7B%5Cpartial+%5Bx%281%2B%5Cfrac+yx%29%5D%7D%7B%5Cpartial+%5Cfrac+yx%7D%3Dx

equation?tex=%5Cmathrm%7Bd%7D%28x%2By%29%3D%281%2B%5Cfrac+yx%29%5Cmathrm%7Bd%7Dx%2Bx%5Cmathrm%7Bd%7D%5Cfrac+yx

羽咲:那么我们再把dx和dy看成一组新基底,又可以得到

equation?tex=%5Cmathrm%7Bd%7D%5Cfrac+yx%3D%5Cfrac+%7B-y%7D%7Bx%5E2%7D%5Cmathrm%7Bd%7Dx%2B%5Cfrac+1x%5Cmathrm%7Bd%7Dy ,代入回去就是
equation?tex=%5Cmathrm%7Bd%7D%28x%2By%29%3D%281%2B%5Cfrac+yx%29%5Cmathrm%7Bd%7Dx%2Bx%28%5Cfrac+%7B-y%7D%7Bx%5E2%7D%5Cmathrm%7Bd%7Dx%2B%5Cfrac+1x%5Cmathrm%7Bd%7Dy%29%3D%5Cmathrm%7Bd%7Dx%2B%5Cmathrm%7Bd%7Dy 。这也恰好印证了
全微分不变性

:是的。所谓全微分不变性,不过是从不同的基底分解dz,无论是哪一种分解,本质上都是相同的。

羽咲:但如果我把

equation?tex=d%28%5Cfrac%7Bx%2By%7D2%29 看成分解的基,即
equation?tex=d%28x%2By%29%3D2%5C%2C+d%28%5Cfrac%7Bx%2By%7D2%29 ,那这不就只用了
一个基向量就完成分解了吗?

或者我把它看作

equation?tex=dx%5C%2C+dy%5C%2C+du%5C%2C+dv%5Ccdots 这些基的组合,其中u,v等等都与x、y都无关,那么我就可以分解为
equation?tex=d%28x%2By%29%3D1%5C%2Cdx%2B1%5C%2Cdy%2B0%5C%2Cdu%2B0%5C%2Cdv%2B%5Ccdots

:你咋比我还能杠啊(看到羽咲紧攥着的拳头)……哦不不,没什么。这个问题说起来比较复杂,你看前面du、dv前面系数不都是0嘛,简而言之就是有多少个变量就最多有多少个非0的基向量,当然,比它少自然也是可以的,不过往往来说,我们习惯分解为dx、dy、dz这种简单的向量,这也是我们看到

equation?tex=%5Cfrac%7B%5Cpartial+%28x%2By%29%7D%7B%5Cpartial+x%7D 第一反应是1的原因,这也不能说是错的,只不过这种表述的确不规范。平时习惯上,我们还是认为它是1的。

第二部分:无穷小元素的关系


经过前面的小剧场,相信大家对「全微分」有了一些基本的认识。值得注意的是,以上这些操作本质上是不严谨的,事实上,保证这些操作合法性的正是全微分形式不变性这一点。切记不能用它作为全微分形式的证明,否则将陷入循环论证的误区。当然,本篇的基调是直觉,以直觉为主线,我们只需要知道保证上述操作合法性的是全微分形式不变性就可以了。

正是因为全微分的形式不变性,我们可以把「微分」看作一个「实体」。什么叫「实体」呢?在我的定义里,「实体就是可以进行『加、减、乘、除』」。当然,1/dx是不被允许的,减的时候也要注意dx-dx可能会残余「高阶无穷小」,乘的时候dx dy往往表示面积[3]除的时候要注意

equation?tex=%5Cfrac%7Bd%5E2y%7D%7Bdx%5E2%7D%5Cneq%5Cfrac%7Bd%5E2y%7D%7Bdt%5E2%7D%28%5Cfrac%7Bdt%7D%7Bdx%7D%29%5E2
因为高阶微分不具有形式不变性,之所以一阶微分可以保证除法,是因为「一阶微分具有形式不变性」。虽然在前面说到本篇的基调是直觉,但是也不能随便乱用。这里只是列举了一些常见的误区,其他误区需要读者逐渐积累发现。

在下面部分的内容中,我们的吉祥物羽咲酱就此退场了。由于下面的环节是比较枯燥的,所以我会尽可能地压缩篇幅。


往往来说,微分都具有具体的物理含义。我们可以认为「微分」是「一个实际物体的代表元素」,例如

equation?tex=dm%3D%5Crho+dV%3D%5Crho+dxdydz ,其中dm就是物体质量的代表元素,如果我们想要求整个物体的质量,那么就是只需要将其积分即可。
equation?tex=m%3D%5Cint_Vdm%3D%5Cint_V%5Crho+dV

同理,恰好今天物理课在讲电磁学,拿电磁学举个例子。

例题:假设与一个长为l,带电量为+q的均匀带电细棒的中垂线距离为R处有一个点M,求该点的场强大小。(见下图)

3d5a632e6d3d33aa7573b113fd7f95c1.png

首先,由对称性,显然沿杆方向分量为0,只考虑中垂线方向。

用微元法分析,首先在细棒l上取出一个

equation?tex=dx 长度的代表元素,其带电量
equation?tex=dq
equation?tex=%5Cfrac%7Bq%5C%2Cdx%7D%7Bl%7D ,假设距离中垂线为x,那么电场强度的分量
equation?tex=dE_x%3D%5Cfrac%7Bk%5C%2C%5Cfrac%7Bq%5C%2Cdx%7Dl%7D%7B%28R%5E2%2Bx%5E2%29%7D%5Cfrac%7BR%7D%7B%28R%5E2%2Bx%5E2%29%5E%7B%5Cfrac12%7D%7D

积分即为:

equation?tex=E_x%3D%5Cint+dE_x%3D%5Cint_%7B-%5Cfrac+l2%7D%5E%7B%5Cfrac+l2%7D%5Cfrac%7BkRq%5C%2Cdx%7D%7Bl%28R%5E2%2Bx%5E2%29%5E%7B%5Cfrac32%7D%7D

我们注意到:我们把dx、dq、dEx都是有物理含义的实体,它们都相当于一个实际物体的代表元素


那么,我们就对这些代表元素的关系进行分析

下面,由于对话体写起来太费时间,我将以断言式的方式先给出各种微小元素的定义。读者将发现:这些定义中很多是显然的,但我们可以由这些显然的定义推导出整本高数的所有微元换元公式。

当然,这里的推导会频繁的应用到「隐函数求导公式(偏导)」,希望读者要将这一公式当成一个显然的、可以秒答的公式。

(注:隐函数求导公式(偏导)见「公式定理说明表」一、3

1、弧长元素

结论:在一元函数里,长度元素为
equation?tex=dl%3D%5Csqrt%7B%28dx%29%5E2%2B%28dy%29%5E2%7D

2、面/体积元素

结论:在二元函数里,面积元素为
equation?tex=dxdy
结论:在三元函数里,体积元素为
equation?tex=dxdydz

3、投影面积元素

equation?tex=dS_%7Bprj%7D%3D%5Cfrac%7Bdxdydz%7D%7B%5Cpartial+F%7D%5Cfrac%7B%5Cpartial+F%7D%7B%5Cpartial+u%7D

其中投影平面垂直与什么,∂u就等于什么。
并且规定∂F可以与dx、dy、dz中任意一者结合,以dx为例,即为∂F/∂x

4、单位曲面法向量

equation?tex=%5Cvec+n%3D%5Cfrac%7B%5C%7BF_x%2CF_y%2CF_z%5C%7D%7D%7B%5Csqrt%7B%28F_x%29%5E2%2B%28F_y%29%5E2%2B%28F_z%29%5E2%7D%7D

注:分母那一坨只是为了单位化

5、单位曲面元素

equation?tex=dS%3D%5Csqrt%7B%28%5Cfrac%7B%5Cpartial+F%7D%7B%5Cpartial+x%7D%29%5E2%2B%28%5Cfrac%7B%5Cpartial+F%7D%7B%5Cpartial+y%7D%29%5E2%2B%28%5Cfrac%7B%5Cpartial+F%7D%7B%5Cpartial+z%7D%29%5E2%7D%5Cfrac%7Bdxdydz%7D%7B%5Cpartial+F%7D

规定∂F可以与dx、dy、dz中任意一者结合,以dx为例,即为∂F/∂x

下面是对上面公式的具体说明

上面的公式是高度抽象的,如果不加以说明,大家根本不知道如何应用它们。下面,我将阐述这些公式的含义,以及其应用方式

在此之前,先定义几个符号:

1、

定义:将偏导数
equation?tex=%5Cfrac%7B%5Cpartial+F%7D%7B%5Cpartial+x%7D 简记为
equation?tex=F_x
equation?tex=F%27%28x%29

2、

定义:将雅可比行列式
equation?tex=%5Cbegin%7Bequation%7D+%5Cbegin%7Bvmatrix%7D+%5Cfrac%7B%5Cpartial+F_1%7D%7B%5Cpartial+x_1%7D++%26++%5Cfrac%7B%5Cpartial+F_1%7D%7B%5Cpartial+x_2%7D++%26+%5Ccdots%5C+%26%5Cfrac%7B%5Cpartial+F_1%7D%7B%5Cpartial+x_n%7D%5C%5C+%5Cfrac%7B%5Cpartial+F_2%7D%7B%5Cpartial+x_1%7D++%26++%5Cfrac%7B%5Cpartial+F_2%7D%7B%5Cpartial+x_2%7D++%26+%5Ccdots%5C+%26%5Cfrac%7B%5Cpartial+F_2%7D%7B%5Cpartial+x_n%7D%5C%5C++%5Cvdots+++%26+%5Cvdots+%26+%5Cddots++%26+%5Cvdots++%5C%5C+%5Cfrac%7B%5Cpartial+F_n%7D%7B%5Cpartial+x_1%7D++%26++%5Cfrac%7B%5Cpartial+F_n%7D%7B%5Cpartial+x_2%7D++%26+%5Ccdots%5C+%26%5Cfrac%7B%5Cpartial+F_n%7D%7B%5Cpartial+x_n%7D%5C%5C+%5Cend%7Bvmatrix%7D+%5Cend%7Bequation%7D++ 简记为
equation?tex=%5Cfrac%7B%5Cpartial+%28F_1%2CF_2%2C%5Ccdots%2CF_n%29%7D%7B%5Cpartial+%28x_1%2Cx_2%2C%5Ccdots%2Cx_n%29%7D

3、雅可比行列式可取倒数[4]

定理:
equation?tex=%5Cfrac%7B%5Cpartial+%28x%2Cy%29%7D%7B%5Cpartial+%28u%2Cv%29%7D%3D%5Cfrac1%7B%5Cfrac%7B%5Cpartial+%28u%2Cv%29%7D%7B%5Cpartial+%28x%2Cy%29%7D%7D

1、弧长元素

结论:在一元函数里,长度元素为
equation?tex=dl%3D%5Csqrt%7B%28dx%29%5E2%2B%28dy%29%5E2%7D

这一结论当然是显然的,我们要研究的是如何将

equation?tex=dl 变化为
equation?tex=dx
equation?tex=dt
equation?tex=d%5Ctheta 这些其他微小元素。

变换方法

A、 变换为dt

equation?tex=dl%3D%5Cfrac%7B%5Csqrt%7B%28dx%29%5E2%2B%28dy%29%5E2%7D%7D%7Bdt%7Ddt%3D%5Csqrt%7B%5Bx%27%28t%29%5D%5E2%2B%5By%27%28t%29%5D%5E2%7Ddt
原理: 方法为同时乘以dt与除以dt,分母上的dt与根号里的dx、dy结合,就变成了dx/dt、dy/dt了。

B、变换为dx

equation?tex=dl%3D%5Cfrac%7B%5Csqrt%7B%28dx%29%5E2%2B%28dy%29%5E2%7D%7D%7Bdx%7Ddx%3D%5Csqrt%7B1%2B%5By%27%28x%29%5D%5E2%7Ddx
原理: 思路上与变换为dt一样,就是把t换为了x。

C、变换为dθ

equation?tex=dl%3D%5Cfrac%7B%5Csqrt%7B%28dx%29%5E2%2B%28dy%29%5E2%7D%7D%7Bd%5Ctheta%7Dd%5Ctheta%3D%5Csqrt%7B%5B%5Crho%28%5Ctheta%29%5D%5E2%2B%5B%5Crho%27%28%5Ctheta%29%5D%5E2%7Dd%5Ctheta
原理: 此处利用了等式
equation?tex=dx%3Dd%28%5Crho%5Ccos%5Ctheta%29%3D%5Ccos%5Ctheta+d%5Crho-%5Crho%5Csin%5Ctheta+d%5Ctheta ,dy对应的等式同理。然后与前面类似的思路,同时乘以除以dθ即可。

2、面/体积元素

结论:在二元函数里,面积元素为
equation?tex=dxdy%3D%5Cfrac%7B%5Cpartial+%28x%2Cy%29%7D%7B%5Cpartial+%28u%2Cv%29%7Ddudv%3D%5Cfrac1%7B%5Cfrac%7B%5Cpartial+%28u%2Cv%29%7D%7B%5Cpartial+%28x%2Cy%29%7D%7Ddudv
结论:在三元函数里,体积元素为
equation?tex=dxdydz%3D%5Cfrac%7B%5Cpartial+%28x%2Cy%2Cz%29%7D%7B%5Cpartial+%28u%2Cv%2Cw%29%7Ddudvdw%3D%5Cfrac1%7B%5Cfrac%7B%5Cpartial+%28u%2Cv%2Cw%29%7D%7B%5Cpartial+%28x%2Cy%2Cz%29%7D%7Ddudvdw

这一结论阐述的是多元函数的换元方法,正如一元函数有

equation?tex=%5Cfrac%7Bdy%7D%7Bdx%7D%3D%5Cfrac1%7B%5Cfrac%7Bdx%7D%7Bdy%7D%7D 一样,如果我们把
equation?tex=%5Cfrac%7Bdy%7D%7Bdx%7D 看作与雅可比行列式一样的伸缩因子。多元雅可比行列式也有类似的性质,即:
equation?tex=%5Cfrac%7B%5Cpartial+%28x%2Cy%29%7D%7B%5Cpartial+%28u%2Cv%29%7D%3D%5Cfrac1%7B%5Cfrac%7B%5Cpartial+%28u%2Cv%29%7D%7B%5Cpartial+%28x%2Cy%29%7D%7D

来具体举几个例子——

A、

equation?tex=dxdy%3D%5Cfrac%7B%5Cpartial+%28x%2Cy%29%7D%7B%5Cpartial+%28%5Crho%2C%5Ctheta%29%7Dd%5Crho+d%5Ctheta%3D%5Crho+d%5Crho+d%5Ctheta

B、

equation?tex=dxdydz%3D%5Cfrac%7B%5Cpartial+%28x%2Cy%2Cz%29%7D%7B%5Cpartial+%28r%2C%5Ctheta%2C%5Cvarphi%29%7Ddr+d%5Ctheta+d%5Cvarphi%3Dr%5E2%5Csin%5Ctheta+dr+d%5Ctheta+d%5Cvarphi

3、投影面积元素

equation?tex=dS_%7Bprj%7D%3D%5Cfrac%7Bdxdydz%7D%7B%5Cpartial+F%7D%5Cfrac%7B%5Cpartial+F%7D%7B%5Cpartial+u%7D

其中投影平面垂直与什么,∂u就等于什么。
并且规定∂F与dx、dy、dz中任意一者结合,以dx为例,即为∂F/∂x

例如投影平面为xOy,则∂u=∂z。

如欲以dxdy来表示之,则令∂F与dz结合,即:

equation?tex=dS_%7BxOy%7D%3D%5Cfrac%7Bdxdy%7D%7B%5Cfrac%7B%5Cpartial+F%7D%7B%5Cpartial+z%7D%7D%5Cfrac%7B%5Cpartial+F%7D%7B%5Cpartial+z%7D%3Ddxdy

如欲求得dydz来表示之,则令∂F与dx结合,即:

equation?tex=dS_%7BxOy%7D%3D%5Cfrac%7Bdydz%7D%7B%5Cfrac%7B%5Cpartial+F%7D%7B%5Cpartial+x%7D%7D%5Cfrac%7B%5Cpartial+F%7D%7B%5Cpartial+z%7D

再考虑到隐函数求导公式:

equation?tex=%5Cfrac%7B%5Cpartial+x%7D%7B%5Cpartial+z%7D%3D-%5Cfrac%7B%5Cfrac%7B%5Cpartial+F%7D%7B%5Cpartial+z%7D%7D%7B%5Cfrac%7B%5Cpartial+F%7D%7B%5Cpartial+x%7D%7D

则:

equation?tex=dS_%7BxOy%7D%3D-%5Cfrac%7B%5Cpartial+x%7D%7B%5Cpartial+z%7Ddydz

4、单位曲面法向量

equation?tex=%5Cvec+n%3D%5Cfrac%7B%5C%7BF_x%2CF_y%2CF_z%5C%7D%7D%7B%5Csqrt%7B%28F_x%29%5E2%2B%28F_y%29%5E2%2B%28F_z%29%5E2%7D%7D

这一点是直观的。

首先说明:分母乘的那一坨是分子向量的模长,相当于单位化。

至于这为什么是法向量,一个直观的理解就是:考虑到全微分,有:

equation?tex=F_xdx%2BF_ydy%2BF_zdz%3D0 ,故有:
equation?tex=%5C%7BF_x%2CF_y%2CF_z%5C%7D%5Ccdot%5C%7Bdx%2Cdy%2Cdz%5C%7D%3D0 。而后者的几何意义为曲面的任一微小向量,而前者与任意微小向量都垂直,自然是法向量了。

5、单位曲面元素

equation?tex=dS%3D%5Csqrt%7B%28%5Cfrac%7B%5Cpartial+F%7D%7B%5Cpartial+x%7D%29%5E2%2B%28%5Cfrac%7B%5Cpartial+F%7D%7B%5Cpartial+y%7D%29%5E2%2B%28%5Cfrac%7B%5Cpartial+F%7D%7B%5Cpartial+z%7D%29%5E2%7D%5Cfrac%7Bdxdydz%7D%7B%5Cpartial+F%7D

这里结合3的投影面积元素就显得好理解了。

投影面积元素

equation?tex=dS%3D%5Cfrac%7B%5Cpartial+F%7D%7B%5Cpartial+u%7D%5Cfrac%7Bdxdydz%7D%7B%5Cpartial+F%7D ,其中u是被投影平面法向量。

单位曲面元素可以看做三个投影面积元素的平方和,也就是本公式。

当然,这个式子只是隐式地指出了单位面积元素,想要得到我们平时常用的公式,就需要把∂F与d结合。例如用dx dy表示(即消去dz),就可以把∂F与dz结合,即为:

equation?tex=dS%3D%5Csqrt%7B%28%5Cfrac%7B%5Cpartial+F%7D%7B%5Cpartial+x%7D%29%5E2%2B%28%5Cfrac%7B%5Cpartial+F%7D%7B%5Cpartial+y%7D%29%5E2%2B%28%5Cfrac%7B%5Cpartial+F%7D%7B%5Cpartial+z%7D%29%5E2%7D%5Cfrac%7Bdxdy%7D%7B%5Cfrac%7B%5Cpartial+F%7D%7B%5Cpartial+z%7D%7D

放到根号里去则是:

equation?tex=dS%3D%5Csqrt%7B%5Cfrac%7B%28%5Cfrac%7B%5Cpartial+F%7D%7B%5Cpartial+x%7D%29%5E2%2B%28%5Cfrac%7B%5Cpartial+F%7D%7B%5Cpartial+y%7D%29%5E2%2B%28%5Cfrac%7B%5Cpartial+F%7D%7B%5Cpartial+z%7D%29%5E2%7D%7B%28%5Cfrac%7B%5Cpartial+F%7D%7B%5Cpartial+z%7D%29%5E2%7D%7Ddxdy

利用隐函数求导公式化简即为:

equation?tex=dS%3D%5Csqrt%7B%28%5Cfrac%7B%5Cpartial+z%7D%7B%5Cpartial+x%7D%29%5E2%2B%28%5Cfrac%7B%5Cpartial+z%7D%7B%5Cpartial+y%7D%29%5E2%2B1%7D%5C%2Cdxdy

第三部分:无穷小元素的在空间解析几何的代表性质


先从一个问题看起——

原来有同学问我:为什么形如

equation?tex=Ax%2BBy%2BCz%2BD%3D0 表示一个平面呢?

我给他的回答是:

考虑上面任意一点

equation?tex=M%28x_0%2Cy_0%2Cz_0%29

这个方程又可以写成:

equation?tex=A%28x-x_0%29%2BB%28y-y_0%29%2BC%28z-z_0%29%3D0

又可以看成向量

equation?tex=%5Cvec+a%3D%5C%7BA%2CB%2CC%5C%7D
equation?tex=%5Cvec+b%3D%5C%7Bx-x_0%2Cy-y_0%2Cz-z_0%5C%7D 的点乘,即:
equation?tex=%5Cvec+a%5Ccdot%5Cvec+b%3D0

这表明:该方程上任意一点与点M构成的向量b都与向量a垂直

这样的点的集合就是一个平面。


上面如果以「把dx看成实体」的角度看这个问题,这就变得更清晰了。

考虑方程:

equation?tex=F%28x%2Cy%2Cz%29%3DAx%2BBy%2BCz%2BD%3D0

进行全微分:

equation?tex=Adx%2BBdy%2BCdz%3D0

写成向量点乘:

equation?tex=%5C%7BA%2CB%2CC%5C%7D%5Ccdot%5C%7Bdx%2Cdy%2Cdz%5C%7D%3D0

这表明:该方程任意一点上的微小变化向量都与常向量

equation?tex=%5C%7BA%2CB%2CC%5C%7D 垂直。

这样我们不仅可以得到「这是一个平面」的信息,还可以知道任意一点的法向量。

这也引出了我们「求任意光滑空间曲面的法向量」的方法——


1、「求任意光滑空间曲面的法向量」的方法

首先,我们知道:通常来说[5]

equation?tex=F%28x%2Cy%2Cz%29%3D0 表示一个空间曲面。

equation?tex=%5Cbegin%7Bcases%7D+F%28x%2Cy%2Cz%29%3D0%5C%5C+G%28x%2Cy%2Cz%29%3D0+%5Cend%7Bcases%7D 表示一个空间曲线。

那么下面我将阐述——如何利用dx的实体性求解空间曲面的法向量/空间曲线的切向量

先举一个简单的例子:

A、求球面

equation?tex=x%5E2%2By%5E2%2Bz%5E2%3D1 上任意一点的法向量。

:将其全微分:

equation?tex=2xdx%2B2ydy%2B2zdz%3D0

可以得到:

equation?tex=%5C%7B2x%2C2y%2C2z%5C%7D%5Ccdot%5C%7Bdx%2Cdy%2Cdz%5C%7D%3D0

我们知道,与任意微小增量都垂直的必然是法向量

equation?tex=%5C%7B2x%2C2y%2C2z%5C%7D 为其法向量。

当然,从特殊到一般,我们可以推广得到下面命题——

B、

equation?tex=F%28x%2Cy%2Cz%29%3D0 上任意一点法向量为
equation?tex=%5C%7BF_x%2CF_y%2CF_z%5C%7D

证明:将其全微分:

equation?tex=F_xdx%2BF_ydy%2BF_zdz%3D0

可以得到:

equation?tex=%5C%7BF_x%2CF_y%2CF_z%5C%7D%5Ccdot%5C%7Bdx%2Cdy%2Cdz%5C%7D%3D0

我们知道,与任意微小增量都垂直的必然是法向量

equation?tex=%5C%7BF_x%2CF_y%2CF_z%5C%7D 为其法向量。

C、应用B解A

球面方程可以写成:

equation?tex=F%28x%2Cy%2Cz%29%3Dx%5E2%2By%5E2%2Bz%5E2-1%3D0

剩下同2操作即可。


2、求解任意空间曲线的切向量

通过几何直观,我们容易发现

equation?tex=%5C%7Bdx%2Cdy%2Cdz%5C%7D 是该点的切向量。

考虑方程:

equation?tex=%5Cbegin%7Bcases%7D+F%28x%2Cy%2Cz%29%3D0%5C%5C+G%28x%2Cy%2Cz%29%3D0+%5Cend%7Bcases%7D

全微分可得:

equation?tex=%5Cbegin%7Bcases%7D+F_xdx%2BF_ydy%2BF_zdz%3D0%5C%5C+G_xdx%2BG_ydy%2BG_zdz%3D0+%5Cend%7Bcases%7D

如果我们只把dx、dy看成变量,其他看成常数,这就是一个二元一次方程组。

以求解dx为例子,这里可以通过《线性代数》的「克莱姆法则(Cramer's Rule)」直接写出答案:

equation?tex=dx%3D-%5Cfrac%7B+%5Cbegin%7Bvmatrix%7D+F_z%26F_y%5C%5C+G_z%26G_y+%5Cend%7Bvmatrix%7D+%7D%7B+%5Cbegin%7Bvmatrix%7D+F_x%26F_y%5C%5C+G_x%26G_y+%5Cend%7Bvmatrix%7D+%7Ddz

化简即为:

equation?tex=%5Cfrac%7Bdx%7D%7B+%5Cbegin%7Bvmatrix%7D+F_y%26F_z%5C%5C+G_y%26G_z+%5Cend%7Bvmatrix%7D+%7D%3D+%5Cfrac%7B+dz+%7D%7B+%5Cbegin%7Bvmatrix%7D+F_x%26F_y%5C%5C+G_x%26G_y+%5Cend%7Bvmatrix%7D+%7D

同理可以求得dy与dz的关系,可以发现:

equation?tex=%5Cfrac%7Bdx%7D%7B+%5Cbegin%7Bvmatrix%7D+F_y%26F_z%5C%5C+G_y%26G_z+%5Cend%7Bvmatrix%7D+%7D%3D+%5Cfrac%7B+dy+%7D%7B+%5Cbegin%7Bvmatrix%7D+F_z%26F_x%5C%5C+G_z%26G_x+%5Cend%7Bvmatrix%7D+%7D+%3D+%5Cfrac%7B+dz+%7D%7B+%5Cbegin%7Bvmatrix%7D+F_x%26F_y%5C%5C+G_x%26G_y+%5Cend%7Bvmatrix%7D+%7D

equation?tex=%5C%7Bdx%2Cdy%2Cdz%5C%7D
equation?tex=%5C%7B+%5Cbegin%7Bvmatrix%7D+F_y%26F_z%5C%5C+G_y%26G_z+%5Cend%7Bvmatrix%7D+%2C+%5Cbegin%7Bvmatrix%7D+F_z%26F_x%5C%5C+G_z%26G_x+%5Cend%7Bvmatrix%7D+%2C+%5Cbegin%7Bvmatrix%7D+F_x%26F_y%5C%5C+G_x%26G_y+%5Cend%7Bvmatrix%7D+%5C%7D 同向。

那么自然方向向量就是:

equation?tex=%5C%7B+%5Cbegin%7Bvmatrix%7D+F_y%26F_z%5C%5C+G_y%26G_z+%5Cend%7Bvmatrix%7D+%2C+%5Cbegin%7Bvmatrix%7D+F_z%26F_x%5C%5C+G_z%26G_x+%5Cend%7Bvmatrix%7D+%2C+%5Cbegin%7Bvmatrix%7D+F_x%26F_y%5C%5C+G_x%26G_y+%5Cend%7Bvmatrix%7D+%5C%7D

其余空间几何的分析方法,本质上都是与上面两者等价的。读者应该理解到

equation?tex=%5C%7Bdx%2Cdy%2Cdz%5C%7D 作为任意微小增量向量的含义,通过其几何含义,得到各种空间几何的式子。

例如——

通过变形得到:

equation?tex=%5Cfrac%7B%5C%7Bdx%2Cdy%2Cdz%5C%7D%7D%7Bdx%7D%3D%5C%7B1%2C%5Cfrac%7Bdy%7D%7Bdx%7D%2C%5Cfrac%7Bdz%7D%7Bdx%7D%5C%7D%3D%5C%7B1%2Cy%27%28x%29%2Cz%27%28x%29%5C%7D

其它的读者可以自行摸索,通过几何对称的公式推导自己具体题目需要的公式是一件有趣的事情。

参考

  1. ^这里略去了一些常见的条件,例如假设函数可微/可导/连续等,这是为了让读者直观理解定理
  2. ^此处举例写法事实上是不严谨的,具体原因会在正文提到
  3. ^(以下内容是根据大佬舍友提示)当然,dx与dy有时候不是简单的数量(标量)相乘关系,在有方向问题的情况时,dx与dy应当理解两个向量,它们两个的乘积相当于叉积(而不是标量乘积),得到的是一个叫做「二重向量」的东西。例如在这个框架下,dx dy=-dy dx。当然,为了处理方便,我在下面引入了一些技术,将其“封装”为了标量处理。至于这一技术的合理性的论证,考虑到篇幅,不予论证。
  4. ^事实上,这显然是需要证明的,否则我们完全有理由相信这一定理不成立。读者可将其作为习题尝试证明之。
  5. ^如果不是刻意构造一些诡异的东西,比如x^2+y^2+z^2+1=0这种实数域无解的东西的话,下面的断言总是成立的
<think>好的,用户问“det是什么意思”,首先我需要确定用户的知识背景。之前的对话中用户询问了3x3行列式的k倍问题,说明他可能刚开始学习线性代数,对行列式有一定了解,但可能还不熟悉术语的缩写。 “det”是“determinant”的缩写,即行列式。我需要用简单明了的语言解释,同时结合之前的例子帮助用户理解。之前已经讨论过行列式的性质,比如某一行乘以k导致行列式变化,这里可以再次引用这些例子来加强记忆。 要确保回答准确,不能有错误。需要提到行列式的基本概念,比如方阵的属性、标量值、几何意义(如面积或体积的缩放因子),以及在线性代数中的应用,比如判断矩阵是否可逆。 还要注意区分用户可能的混淆点,比如det矩阵其他概念的区别,比如矩阵乘法、迹等。确认用户是否可能将det与其他术语混淆,但根据问题本身,用户直接问det的含义,应该不需要展开其他内容。 用户之前的问题涉及行列式的操作,所以需要保持回答的连贯性,可以再次用之前的例子说明det的作用,比如当某一行乘以k时,det如何变化,呼应之前的讨论,帮助用户建立联系。 另外,用户可能想知道det的实际应用,比如为什么需要计算行列式,可以简单提及判断可逆性、解线性方程组等,但不要过于深入,以免信息过载。 需要检查语言是否口语化,避免使用过于专业的术语,同时保持准确性。例如,用“方阵”而不是“n×n矩阵”,可能更易懂。同时,确保LaTeX格式正确,如使用$$...$$和$...$,避免之前的错误。 最后,总结det的重要性,并确认用户是否还有进一步的问题,但根据用户当前的问题,可能不需要主动扩展,保持回答简洁即可。</think>### **det 的含义** **det** 是 **行列式(determinant)** 的缩写,表示一个**方阵**(行数和列数相等的矩阵)的**标量属性**。它通过特定计算规则得出,反映了矩阵的某些核心性质,例如: --- #### **1. 基本定义** - 对任意 $n \times n$ 方阵 $A$,其行列式记为 $\det(A)$ 或 $|A|$。 - **计算规则**:通过排列组合和符号展开(如莱布尼茨公式)或递归展开(余子式展开)得出。 --- #### **2. 核心意义** - **几何解释**:在二维和三维中,行列式的绝对值表示矩阵对应线性变换后**面积或体积的缩放比例**。 - 例如:矩阵 $A = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$ 的行列式 $\det(A) = 6$,表示它将平面区域的面积放大 $6$ 倍。 - **代数意义**: - **可逆性**:$\det(A) \neq 0$ 时,矩阵 $A$ 可逆(即存在逆矩阵)。 - **线性相关性**:$\det(A) = 0$ 时,矩阵的列向量(或行向量)线性相关。 --- #### **3. 具体例子** - **$2 \times 2$ 矩阵**: $$ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad \det(A) = ad - bc $$ - 若 $\det(A) = 0$,则两列向量 $(a,c)$ 和 $(b,d)$ 共线。 - **$3 \times 3$ 矩阵**(与您之前的问题关联): $$ B = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}, \quad \det(B) = a(ei - fh) - b(di - fg) + c(dh - eg) $$ - 如将某一行乘以 $k$(例如第二行乘 $k$),则 $\det(B') = k \cdot \det(B)$(参考之前的讨论)。 --- #### **4. 重要性质** 1. **单位矩阵**:$\det(I) = 1$。 2. **乘积性质**:$\det(AB) = \det(A)\det(B)$。 3. **转置不变性**:$\det(A) = \det(A^T)$。 4. **行变换影响**: - 交换两行 → $\det(A)$ 变号。 - 某行乘 $k$ → $\det(A)$ 乘 $k$。 - 某行加上另一行的倍数 → $\det(A)$ 不变。 --- ### **总结** - **det** 是行列式的符号,用于描述方阵的核心特性。 - 它既是矩阵可逆性的判据,也量化了线性变换对空间的“缩放效应”。 - 在计算中,行列式的值直接受行/列操作影响(如您之前提到的某行乘 $k$)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值