高斯混合模型|机器学习推导系列(十三)

一、概述

以一维数据为例,我们可以看到下图通过将多个单一的高斯模型加权叠加到一起就可以获得一个高斯混合模型,这个混合模型显然具备比单个高斯模型更强的拟合能力:

高斯混合模型

再举一个二维数据的例子,在下图中可以看到有两个数据密集区域,对应的概率分布也就会有两个峰。高斯混合模型可以看做生成模型,其数据生成过程可以认为先选择一个高斯分布,再从被选择的高斯分布中生成数据:

高斯混合模型

综合上述两种描述,我们可以从两种角度来描述高斯混合模型:

  1. 几何角度:加权平均

可以认为高斯混合模型是将多个高斯分布加权平均而成的模型:

p ( x ) = ∑ k = 1 K α k N ( μ k , Σ k ) , ∑ k = 1 K α k = 1 p(x)=\sum_{k=1}^{K}\alpha _{k}N(\mu _{k},\Sigma _{k}),\sum_{k=1}^{K}\alpha _{k}=1 p(x)=k=1KαkN(μk,Σk),k=1Kαk=1

  1. 混合模型(或者生成模型)角度

可以认为高斯混合模型是一种含有隐变量的生成模型:

x x x:observed variable
z z z:latent variable

z z z是隐变量,表示对应的样本 x x x属于哪一个高斯分布,其概率分为如下表:

z z z C 1 C_1 C1 C 2 C_2 C2 ⋯ \cdots C k C_k Ck
p p p p 1 p_1 p1 p 2 p_2 p2 ⋯ \cdots p k p_k pk

可以认为这里的概率 p k p_k pk就是几何角度加权平均中权重,两种角度的解释其实是一个意思。

我们可以画出高斯混合模型的概率图:

概率图

实心点代表模型的参数,右下角的 N N N代表样本个数。

二、尝试用极大似然估计来求解

X X X:observed data → X = ( x 1 , x 2 , ⋯   , x N ) \rightarrow X=(x_{1},x_{2},\cdots ,x_{N}) X=(x1,x2,,xN)
( X , Z ) (X,Z) (X,Z):comlete data
θ \theta θ:parameter → θ = { p 1 , p 2 , ⋯   , p k , μ 1 , μ 2 , ⋯   , μ k , Σ 1 , Σ 2 , ⋯   , Σ k } , ∑ i = 1 K p k = 1 \rightarrow \theta =\left \{p_{1},p_{2},\cdots ,p_{k},\mu _{1},\mu _{2},\cdots ,\mu _{k},\Sigma _{1},\Sigma _{2},\cdots ,\Sigma _{k}\right \},\sum_{i=1}^{K}p_{k}=1 θ={p1,p2,,pk,μ1,μ2,,μk,Σ1,Σ2,,Σk},i=1Kpk=1

以上为我们的数据以及需要求解的参数。接下来我们表示一下概率 p ( x ) p(x) p(x):

p ( x ) = ∑ z p ( x , z ) = ∑ k = 1 K p ( x , z = C k ) = ∑ k = 1 K p ( z = C k ) ⋅ p ( x ∣ z = C k ) = ∑ k = 1 K p k ⋅ N ( x ∣ μ k , Σ k ) p(x)=\sum _{z}p(x,z)\\ =\sum _{k=1}^{K}p(x,z=C_{k})\\ =\sum _{k=1}^{K}p(z=C_{k})\cdot p(x|z=C_{k})\\ =\sum _{k=1}^{K}p_{k}\cdot N(x|\mu _{k},\Sigma _{k}) p(x)=zp(x,z)=k=1Kp(x,z=Ck)=k=1Kp(z=Ck)p(xz=Ck)=k=1KpkN(xμk,Σk)

然后我们使用极大似然估计法求解这个参数估计问题。首先告知结论:极大似然估计法无法求解含有隐变量的参数估计问题,或者说不能得到解析解。接下来来看为什么不能用极大似然估计法来求解:

θ ^ M L E = a r g m a x θ    l o g    p ( X ) = a r g m a x θ    l o g ∏ i = 1 N p ( x i ) = a r g m a x θ ∑ i = 1 N l o g    p ( x i ) = a r g m a x θ ∑ i = 1 N l o g ∑ k = 1 K p k ⋅ N ( x i ∣ μ k , Σ k ) \hat{\theta }_{MLE}=\underset{\theta }{argmax}\; log\; p(X)\\ =\underset{\theta }{argmax}\; log\prod_{i=1}^{N}p(x_{i})\\ =\underset{\theta }{argmax}\sum_{i=1}^{N}log\; p(x_{i})\\ =\underset{\theta }{argmax}\sum_{i=1}^{N}{\color{Red}{log\sum _{k=1}^{K}}}p_{k}\cdot N(x_{i}|\mu _{k},\Sigma _{k}) θ^MLE=θargmaxlogp(X)=θargmaxlogi=1Np(xi)=θargmaxi=1Nlogp(xi)=θargmaxi=1Nlogk=1KpkN(xiμk,Σk)

极大似然估计法不能得到解析解的原因为 l o g log log函数内部出现了求和符号。当然我们可以使用梯度下降法来进行求解,但是对于含有隐变量的模型来说使用EM算法是更为合适的。

三、使用EM算法求解

由于使用EM算法需要用到联合概率 p ( x , z ) p(x,z) p(x,z)和后验 p ( z ∣ x ) p(z|x) p(zx),所有我们首先写出这两个概率的表示:

p ( x , z ) = p ( z ) p ( x ∣ z ) = p z ⋅ N ( x ∣ μ z , Σ z ) p ( z ∣ x ) = p ( x , z ) p ( x ) = p z ⋅ N ( x ∣ μ z , Σ z ) ∑ k = 1 K p k ⋅ N ( x ∣ μ k , Σ k ) p(x,z)=p(z)p(x|z)=p_{z}\cdot N(x|\mu _{z},\Sigma _{z})\\ p(z|x)=\frac{p(x,z)}{p(x)}=\frac{p_{z}\cdot N(x|\mu _{z},\Sigma _{z})}{\sum_{k=1}^{K}p_{k}\cdot N(x|\mu _{k},\Sigma _{k})} p(x,z)=p(z)p(xz)=pzN(xμz,Σz)p(zx)=p(x)p(x,z)=k=1KpkN(xμk,Σk)pzN(xμz,Σz)

  1. E step

Q ( θ , θ t ) = ∑ Z l o g    p ( X , Z ∣ θ ) ⋅ p ( Z ∣ X , θ t ) = ∑ z 1 z 2 ⋯ z N l o g    ∏ i = 1 N p ( x i , z i ∣ θ ) ⋅ ∏ i = 1 N p ( z i ∣ x i , θ t ) = ∑ z 1 z 2 ⋯ z N ∑ i = 1 N l o g    p ( x i , z i ∣ θ ) ⋅ ∏ i = 1 N p ( z i ∣ x i , θ t ) = ∑ z 1 z 2 ⋯ z N [ l o g    p ( x 1 , z 1 ∣ θ ) + l o g    p ( x 2 , z 2 ∣ θ ) + ⋯ + l o g    p ( x i , z i ∣ θ ) ] ⋅ ∏ i = 1 N p ( z i ∣ x i , θ t ) Q(\theta ,\theta ^{t})=\sum _{Z}log\; p(X,Z|\theta )\cdot p(Z|X,\theta ^{t})\\ =\sum _{z_{1}z_{2}\cdots z_{N}}log\; \prod_{i=1}^{N}p(x_{i},z_{i}|\theta )\cdot \prod_{i=1}^{N} p(z_{i}|x_{i},\theta ^{t})\\ =\sum _{z_{1}z_{2}\cdots z_{N}}\sum_{i=1}^{N}log\; p(x_{i},z_{i}|\theta )\cdot \prod_{i=1}^{N} p(z_{i}|x_{i},\theta ^{t})\\ =\sum _{z_{1}z_{2}\cdots z_{N}}[log\; p(x_{1},z_{1}|\theta )+log\; p(x_{2},z_{2}|\theta )+\cdots +log\; p(x_{i},z_{i}|\theta )]\cdot \prod_{i=1}^{N} p(z_{i}|x_{i},\theta ^{t}) Q(θ,θt)=Zlogp(X,Zθ)p(ZX,θt)=z1z2zNlogi=1Np(xi,ziθ)i=1Np(zixi,θt)=z1z2zNi=1Nlogp(xi,ziθ)i=1Np(zixi,θt)=z1z2zN[logp(x1,z1θ)+logp(x2,z2θ)++logp(xi,ziθ)]i=1Np(zixi,θt)

对于上式展开的每一项,我们可以进行化简:

∑ z 1 z 2 ⋯ z N l o g    p ( x 1 , z 1 ∣ θ ) ∏ i = 1 N p ( z i ∣ x i , θ t ) = ∑ z 1 z 2 ⋯ z N l o g    p ( x 1 , z 1 ∣ θ ) ⋅ p ( z 1 ∣ x 1 , θ t ) ∏ i = 2 N p ( z i ∣ x i , θ t ) = ∑ z 1 l o g    p ( x 1 , z 1 ∣ θ ) ⋅ p ( z 1 ∣ x 1 , θ t ) ∑ z 2 z 3 ⋯ z N ∏ i = 2 N p ( z i ∣ x i , θ t ) = ∑ z 1 l o g    p ( x 1 , z 1 ∣ θ ) ⋅ p ( z 1 ∣ x 1 , θ t ) ∑ z 2 z 3 ⋯ z N p ( z 2 ∣ x 2 , θ t ) p ( z 3 ∣ x 3 , θ t ) ⋯ p ( z N ∣ x N , θ t ) = ∑ z 1 l o g    p ( x 1 , z 1 ∣ θ ) ⋅ p ( z 1 ∣ x 1 , θ t ) ∑ z 2 p ( z 2 ∣ x 2 , θ t ) ⏟ = 1 ∑ z 3 p ( z 3 ∣ x 3 , θ t ) ⏟ = 1 ⋯ ∑ z N p ( z N ∣ x N , θ t ) ⏟ = 1 = ∑ z 1 l o g    p ( x 1 , z 1 ∣ θ ) ⋅ p ( z 1 ∣ x 1 , θ t ) 同 样 的 我 们 可 以 得 到 ∑ z 1 z 2 ⋯ z N l o g    p ( x 1 , z 1 ∣ θ ) ∏ i = 1 N p ( z i ∣ x i , θ t ) = ∑ z i l o g    p ( x i , z i ∣ θ ) p ( z i ∣ x i , θ t ) \sum _{z_{1}z_{2}\cdots z_{N}}log\; p(x_{1},z_{1}|\theta )\prod_{i=1}^{N} p(z_{i}|x_{i},\theta ^{t})\\ =\sum _{z_{1}z_{2}\cdots z_{N}}log\; p(x_{1},z_{1}|\theta )\cdot p(z_{1}|x_{1},\theta ^{t})\prod_{i=2}^{N} p(z_{i}|x_{i},\theta ^{t})\\ =\sum _{z_{1}}log\; p(x_{1},z_{1}|\theta )\cdot p(z_{1}|x_{1},\theta ^{t})\sum _{z_{2}z_{3}\cdots z_{N}}\prod_{i=2}^{N} p(z_{i}|x_{i},\theta ^{t})\\ =\sum _{z_{1}}log\; p(x_{1},z_{1}|\theta )\cdot p(z_{1}|x_{1},\theta ^{t})\sum _{z_{2}z_{3}\cdots z_{N}}p(z_{2}|x_{2},\theta ^{t})p(z_{3}|x_{3},\theta ^{t})\cdots p(z_{N}|x_{N},\theta ^{t})\\ =\sum _{z_{1}}log\; p(x_{1},z_{1}|\theta )\cdot p(z_{1}|x_{1},\theta ^{t})\underset{=1}{\underbrace{\sum _{z_{2}}p(z_{2}|x_{2},\theta ^{t})}}\underset{=1}{\underbrace{\sum _{z_{3}}p(z_{3}|x_{3},\theta ^{t})}}\cdots \underset{=1}{\underbrace{\sum _{z_{N}}p(z_{N}|x_{N},\theta ^{t})}}\\ =\sum _{z_{1}}log\; p(x_{1},z_{1}|\theta )\cdot p(z_{1}|x_{1},\theta ^{t})\\ 同样的我们可以得到\sum _{z_{1}z_{2}\cdots z_{N}}log\; p(x_{1},z_{1}|\theta )\prod_{i=1}^{N} p(z_{i}|x_{i},\theta ^{t})=\sum _{z_{i}}log\; p(x_{i},z_{i}|\theta )p(z_{i}|x_{i},\theta ^{t}) z1z2zNlogp(x1,z1θ)i=1Np(zixi,θt)=z1z2zNlogp(x1,z1θ)p(z1x1,θt)i=2Np(zixi,θt)=z1logp(x1,z1θ)p(z1x1,θt)z2z3zNi=2Np(zixi,θt)=z1logp(x1,z1θ)p(z1x1,θt)z2z3zNp(z2x2,θt)p(z3x3,θt)p(zNxN,θt)=z1logp(x1,z1θ)p(z1x1,θt)=1 z2p(z2x2,θt)=1 z3p(z3x3,θt)=1 zNp(zNxN,θt)=z1logp(x1,z1θ)p(z1x1,θt)z1z2zNlogp(x1,z1θ)i=1Np(zixi,θt)=zilogp(xi,ziθ)p(zixi,θt)

继续对 Q ( θ , θ t ) Q(\theta ,\theta ^{t}) Q(θ,θt)进行化简可以得到:

Q ( θ , θ t ) = ∑ z 1 l o g    p ( x 1 , z 1 ∣ θ ) ⋅ p ( z 1 ∣ x 1 , θ t ) + ⋯ + ∑ z i l o g    p ( x i , z i ∣ θ ) ⋅ p ( z i ∣ x i , θ t ) = ∑ i = 1 N ∑ z i l o g    p ( x i , z i ∣ θ ) ⋅ p ( z i ∣ x i , θ t ) = ∑ i = 1 N ∑ z i l o g    [ p z i ⋅ N ( x i ∣ μ z i , Σ z i ) ] ⋅ p z i t ⋅ N ( x i ∣ μ z i t , Σ z i t ) ∑ k = 1 K p k t ⋅ N ( x i ∣ μ k t , Σ k t ) ( p z i t ⋅ N ( x i ∣ μ z i t , Σ z i t ) ∑ k = 1 K p k t ⋅ N ( x i ∣ μ k t , Σ k t ) 与 θ 无 关 , 暂 时 写 作 p ( z i ∣ x i , θ t ) ) = ∑ i = 1 N ∑ z i l o g    [ p z i ⋅ N ( x i ∣ μ z i , Σ z i ) ] ⋅ p ( z i ∣ x i , θ t ) = ∑ z i ∑ i = 1 N l o g    [ p z i ⋅ N ( x i ∣ μ z i , Σ z i ) ] ⋅ p ( z i ∣ x i , θ t ) = ∑ k = 1 K ∑ i = 1 N l o g    [ p k ⋅ N ( x i ∣ μ k , Σ k ) ] ⋅ p ( z i = C k ∣ x i , θ t ) = ∑ k = 1 K ∑ i = 1 N [ l o g    p k + l o g    N ( x i ∣ μ k , Σ k ) ] ⋅ p ( z i = C k ∣ x i , θ t ) Q(\theta ,\theta ^{t})=\sum _{z_{1}}log\; p(x_{1},z_{1}|\theta )\cdot p(z_{1}|x_{1},\theta ^{t})+\cdots +\sum _{z_{i}}log\; p(x_{i},z_{i}|\theta )\cdot p(z_{i}|x_{i},\theta ^{t})\\ =\sum_{i=1}^{N}\sum _{z_{i}}log\; p(x_{i},z_{i}|\theta )\cdot p(z_{i}|x_{i},\theta ^{t})\\ =\sum_{i=1}^{N}\sum _{z_{i}}log\; [p_{z_{i}}\cdot N(x_{i}|\mu _{z_{i}},\Sigma _{z_{i}})]\cdot \frac{p_{z_{i}}^{t}\cdot N(x_{i}|\mu _{z_{i}}^{t},\Sigma _{z_{i}}^{t})}{\sum_{k=1}^{K}p_{k}^{t}\cdot N(x_{i}|\mu _{k}^{t},\Sigma _{k}^{t})}\\ (\frac{p_{z_{i}}^{t}\cdot N(x_{i}|\mu _{z_{i}}^{t},\Sigma _{z_{i}}^{t})}{\sum_{k=1}^{K}p_{k}^{t}\cdot N(x_{i}|\mu _{k}^{t},\Sigma _{k}^{t})}与\theta 无关,暂时写作p(z_{i}|x_{i},\theta ^{t}))\\ =\sum_{i=1}^{N}\sum _{z_{i}}log\; [p_{z_{i}}\cdot N(x_{i}|\mu _{z_{i}},\Sigma _{z_{i}})]\cdot p(z_{i}|x_{i},\theta ^{t})\\ =\sum _{z_{i}}\sum_{i=1}^{N}log\; [p_{z_{i}}\cdot N(x_{i}|\mu _{z_{i}},\Sigma _{z_{i}})]\cdot p(z_{i}|x_{i},\theta ^{t})\\ =\sum_{k=1}^{K}\sum_{i=1}^{N}log\; [p_{k}\cdot N(x_{i}|\mu _{k},\Sigma _{k})]\cdot p(z_{i}=C_{k}|x_{i},\theta ^{t})\\ =\sum_{k=1}^{K}\sum_{i=1}^{N}[log\; p_{k }+log\; N(x_{i}|\mu _{k},\Sigma _{k})]\cdot p(z_{i}=C_{k}|x_{i},\theta ^{t}) Q(θ,θt)=z1logp(x1,z1θ)p(z1x1,θt)++zilogp(xi,ziθ)p(zixi,θt)=i=1Nzilogp(xi,ziθ)p(zixi,θt)=i=1Nzilog[pziN(xiμzi,Σzi)]k=1KpktN(xiμkt,Σkt)pzitN(xiμzit,Σzit)(k=1KpktN(xiμkt,Σkt)pzitN(xiμzit,Σzit)θp(zixi,θt))=i=1Nzilog[pziN(xiμzi,Σzi)]p(zixi,θt)=zii=1Nlog[pziN(xiμzi,Σzi)]p(zixi,θt)=k=1Ki=1Nlog[pkN(xiμk,Σk)]p(zi=Ckxi,θt)=k=1Ki=1N[logpk+logN(xiμk,Σk)]p(zi=Ckxi,θt)

  1. M step

EM算法的迭代公式为:

θ t + 1 = a r g m a x θ    Q ( θ , θ t ) \theta ^{t+1}=\underset{\theta }{argmax}\; Q(\theta ,\theta ^{t}) θt+1=θargmaxQ(θ,θt)

下面以求解 p t + 1 = ( p 1 t + 1 , p 2 t + 1 , ⋯   , p K t + 1 ) T p^{t+1}=(p_{1}^{t+1},p_{2}^{t+1},\cdots ,p_{K}^{t+1})^{T} pt+1=(p1t+1,p2t+1,,pKt+1)T为例,来看如何进行迭代求解,以下是求解的迭代公式:

p k t + 1 = a r g m a x p k ∑ k = 1 K ∑ i = 1 N l o g    p k ⋅ p ( z i = C k ∣ x i , θ t ) , s . t .    ∑ k = 1 K p k = 1 p_{k}^{t+1}=\underset{p_{k}}{argmax}\sum_{k=1}^{K}\sum_{i=1}^{N}log\; p_{k }\cdot p(z_{i}=C_{k}|x_{i},\theta ^{t}),s.t.\; \sum_{k=1}^{K}p_{k}=1 pkt+1=pkargmaxk=1Ki=1Nlogpkp(zi=Ckxi,θt),s.t.k=1Kpk=1

于是可以转化为以下约束优化问题:

{ m i n p − ∑ k = 1 K ∑ i = 1 N l o g    p k ⋅ p ( z i = C k ∣ x i , θ t ) s . t .    ∑ k = 1 K p k = 1 \left\{\begin{matrix} \underset{p}{min}-\sum_{k=1}^{K}\sum_{i=1}^{N}log\; p_{k }\cdot p(z_{i}=C_{k}|x_{i},\theta ^{t})\\ s.t.\; \sum_{k=1}^{K}p_{k}=1 \end{matrix}\right. {pmink=1Ki=1Nlogpkp(zi=Ckxi,θt)s.t.k=1Kpk=1

然后使用拉格朗日乘子法进行求解:

L ( p , λ ) = − ∑ k = 1 K ∑ i = 1 N l o g    p k ⋅ p ( z i = C k ∣ x i , θ t ) + λ ( ∑ k = 1 K p k − 1 ) ∂ L ∂ p k = − ∑ i = 1 N 1 p k ⋅ p ( z i = C k ∣ x i , θ t ) + λ = △ 0 ⇒ − ∑ i = 1 N p ( z i = C k ∣ x i , θ t ) + p k t + 1 λ = 0 ⇒ k = 1 , 2 , ⋯   , K − ∑ i = 1 N ∑ k = 1 K p ( z i = C k ∣ x i , θ t ) ⏟ = 1 ⏟ = N + ∑ k = 1 K p k t + 1 ⏟ = 1 λ = 0 ⇒ − N + λ = 0 ⇒ λ = N 代 入 − ∑ i = 1 N p ( z i = C k ∣ x i , θ t ) + p k t + 1 λ = 0 得 − ∑ i = 1 N p ( z i = C k ∣ x i , θ t ) + p k t + 1 N = 0 ⇒ p k t + 1 = ∑ i = 1 N p ( z i = C k ∣ x i , θ t ) N L(p,\lambda )=-\sum_{k=1}^{K}\sum_{i=1}^{N}log\; p_{k }\cdot p(z_{i}=C_{k}|x_{i},\theta ^{t})+\lambda (\sum_{k=1}^{K}p_{k}-1)\\ \frac{\partial L}{\partial p_{k}}=-\sum_{i=1}^{N}\frac{1}{p_{k}}\cdot p(z_{i}=C_{k}|x_{i},\theta ^{t})+\lambda \overset{\triangle }{=}0\\ \Rightarrow -\sum_{i=1}^{N}p(z_{i}=C_{k}|x_{i},\theta ^{t})+p_{k}^{t+1}\lambda =0\\ \overset{k=1,2,\cdots ,K}{\Rightarrow }-\underset{=N}{\underbrace{\sum_{i=1}^{N}\underset{=1}{\underbrace{\sum_{k=1}^{K}p(z_{i}=C_{k}|x_{i},\theta ^{t})}}}}+\underset{=1}{\underbrace{\sum_{k=1}^{K}p_{k}^{t+1}}}\lambda =0\\ \Rightarrow -N+\lambda =0\\ \Rightarrow \lambda =N\\ 代入-\sum_{i=1}^{N}p(z_{i}=C_{k}|x_{i},\theta ^{t})+p_{k}^{t+1}\lambda =0得\\ -\sum_{i=1}^{N}p(z_{i}=C_{k}|x_{i},\theta ^{t})+p_{k}^{t+1}N=0\\ \Rightarrow p_{k}^{t+1}=\frac{\sum_{i=1}^{N}p(z_{i}=C_{k}|x_{i},\theta ^{t})}{N} L(p,λ)=k=1Ki=1Nlogpkp(zi=Ckxi,θt)+λ(k=1Kpk1)pkL=i=1Npk1p(zi=Ckxi,θt)+λ=0i=1Np(zi=Ckxi,θt)+pkt+1λ=0k=1,2,,K=N i=1N=1 k=1Kp(zi=Ckxi,θt)+=1 k=1Kpkt+1λ=0N+λ=0λ=Ni=1Np(zi=Ckxi,θt)+pkt+1λ=0i=1Np(zi=Ckxi,θt)+pkt+1N=0pkt+1=Ni=1Np(zi=Ckxi,θt)

这里以求解 p t + 1 p^{t+1} pt+1为例展示了M step的求解过程,其他参数也按照极大化Q函数的思路就可以求解,求得一轮参数后要继续迭代求解直至收敛。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
高斯混合模型(Gaussian Mixture Model,简称GMM)是一种常用的概率模型,用于对数据进行建模和聚类分析。它假设数据是由多个高斯分布组成的混合体,每个高斯分布称为一个分量,而混合模型则是这些分量的线性组合。 在MATLAB中,可以使用Statistics and Machine Learning Toolbox中的gmdistribution函数来实现高斯混合模型。该函数可以根据给定的数据集和指定的分量数量,估计出每个分量的均值、协方差矩阵和权重。 以下是使用MATLAB进行高斯混合模型建模的基本步骤: 1. 准备数据集:将需要进行建模的数据集准备好。 2. 选择分量数量:根据实际情况选择合适的分量数量。 3. 创建高斯混合模型对象:使用gmdistribution函数创建一个高斯混合模型对象,并指定分量数量。 4. 估计参数:使用fit函数对数据进行拟合,估计出每个分量的均值、协方差矩阵和权重。 5. 预测和分类:使用cluster函数对新数据进行分类或使用pdf函数计算数据点属于每个分量的概率密度值。 下面是一个示例代码,展示了如何在MATLAB中使用高斯混合模型进行建模: ```matlab % 准备数据集 data = [randn(1000,2); 5+randn(1000,2)]; % 选择分量数量 numComponents = 2; % 创建高斯混合模型对象 gmm = gmdistribution.fit(data, numComponents); % 估计参数 mu = gmm.mu; sigma = gmm.Sigma; weights = gmm.PComponents; % 预测和分类 newData = [1, 1; 6, 6]; idx = cluster(gmm, newData); pdfValues = pdf(gmm, newData); disp("估计的均值:"); disp(mu); disp("估计的协方差矩阵:"); disp(sigma); disp("估计的权重:"); disp(weights); disp("新数据的分类结果:"); disp(idx); disp("新数据的概率密度值:"); disp(pdfValues); ``` 这是一个简单的示例,展示了如何使用MATLAB中的高斯混合模型进行建模和预测。你可以根据实际需求进行参数调整和功能扩展。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值