MIT18.06学习笔记 - Lecture 3: Multiplication and Inverse Matrices

这个系列文章是我重温Gilbert老爷子的线性代数在线课程的学习笔记。
Course Name:MIT 18.06 Linear Algebra
Text Book: Introduction to Linear Algebra
章节内容: 2.4-2.5


课程提纲
1. Matrix Multiplication (5 ways)
2. The laws for Matrix Operations
3. Inverse Matrices
4. Gauss-Jordan Elimination

课程重点


Row echelon form resulting from Gaussian elimination: an upper triangular matrix U U .
Reduced row echelon form computed by Gauss–Jordan elimination: all of the leading coefficients (the leftmost nonzero entry in each row) are 1, and every column containing a leading coefficient has zeros elsewhere, it is unique and independent of the sequence of row operations used. For example, the third and fourth matrices are the ones in row echelon form, and the final matrix is the unique reduced row echelon form:


Matrix Multiplication (5 ways)

1. Entry view, the entry in row i and column j j of AB is (row i i of A) (column j j of B):

2. Column view, columns of C C are combinations of columns of A:

3. Row view, rows of C are combinations of rows of B:

4. Outer product view, AB A B adds up columns times rows, important special case of block view:

Compare it with the usual rows times columns. Row 1 of A A times column 1 of B gave the (1,1) entry in AB A B . Now column 1 of A A times row 1 of B gives a full matrix - not just a single number:

5. Block view, matrix can be cut into blocks, if the cuts between columns of A A match the cuts between rows of B, block multiplication of AB A B is allowed:

Block matrix can do elimination on a whole (block) column of A A :

This is the ordinary elimination, a column at a time - written in blocks. That final block S is called the Schurcomplement S c h u r c o m p l e m e n t .

The laws for Matrix Operations



Inverse matrix is A1 A − 1 and A0=I A 0 = I .

Inverse Matrices

The matrix A A is invertible if there exists a matrix A1 such that A1A=I A − 1 A = I and AA1=I A A − 1 = I . Six notes about A1 A − 1 :
Note 1: The inverse exists if and only if elimination products n n pivots (row exchanges are allowed).
Note 2: Suppose BA=I and also AC=I A C = I , then B=C B = C , according to B(AC)=(BA)C B ( A C ) = ( B A ) C
Note 3: If A A is invertible, the one and only solution to Ax=b is x=A1B x = A − 1 B
Note 4: Suppose there is a nonzero vector x x such that Ax=0, then A A cannot have an inverse.
Note 5: A 2 by 2 matrix is invertible if and only if adbc is not zero:

This number adbc a d − b c is the determinant of A A . A matrix is invertible if its determinant is not zero, but the test for n pivot is usually decided before the determinant appears.
Note 6: A diagonal matrix has an inverse provided no diagonal entries are zeros:

The Inverse of a product AB A B comes in reverse order: (AB)1=B1A1 ( A B ) − 1 = B − 1 A − 1
For square matrices, an inverse on one side is automatically an inverse on the other side. If AB=I A B = I then automatically BA=I B A = I , where B=A1 B = A − 1 .

Gauss-Jordan Elimination

Th Gauss-Jordan method computes A1 A − 1 using block matrix [A I] [ A   I ] :

Here is an example, first part is doing Gaussian elimination to get U U (upper triangular) in the first three columns, which is in Row Echelon Form:

Second part is to produce zeros above the pivots: Gauss would finish by back substitution but Jordan continue with elimination to the Reduced Echelon Form (after the last step):

The last step is to divide each row by its pivot, the first half of the result matrix is I, because K K is invertible and the second half is K1:

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值