本文为《Linear algebra and its applications》的读书笔记
目录
Row Operations
- The secret of determinants lies in how they change when row operations are performed.
Study Tip: In general, computation of a 3 × 3 3\times3 3×3 determinant by row reduction takes 10 multiplications (and divisions), but cofactor expansion only takes 9 multiplications. At n = 4 n = 4 n=4, the advantage switches to row reduction, which requires 23 multiplications, cofactor expansion 40 (9 for four 3 × 3 3\times3 3×3 determinants, plus 4 multiplications of a i j a_{ij} aij times d e t A i j det A_{ij} detAij). Often, the best strategy is to combine the two techniques
- 推论: ∣ k A ∣ = k n ∣ A ∣ |kA|=k^n|A| ∣kA∣=kn∣A∣
利用行变换计算行列式
- Suppose a square matrix
A
A
A has been reduced to an echelon form
U
U
U by row replacements and row interchanges.
- If there are
r
r
r interchanges, then
It is interesting to note that although the echelon form U U U described above is not unique, and the pivots are not unique, the p r o d u c t product product of the pivots is unique, except for a possible minus sign.
EXAMPLE 1
Compute d e t A det\ A det A, where A = [ 1 − 4 2 − 2 8 − 9 − 1 7 0 ] A = \begin{bmatrix} 1&-4&2\\-2&8&-9\\-1&7&0\end{bmatrix} A=⎣⎡1−2−1−4872−90⎦⎤.
SOLUTION
- The strategy is to reduce
A
A
A to echelon form and then to use the fact that the determinant of a triangular matrix is the product of the diagonal entries.
- A common use of Theorem 3(c)in hand calculations is to f a c t o r factor factor o u t out out a a a c o m m o n common common m u l t i p l e multiple multiple o f of of o n e one one r o w row row of a matrix. For instance,
EXAMPLE 2
Compute d e t A det\ A det A, where A = [ 2 − 8 6 8 3 − 9 5 10 − 3 0 1 − 2 1 − 4 0 6 ] A =\begin{bmatrix} 2&-8&6&8\\3&-9&5&10\\-3&0&1&-2\\1&-4&0&6\end{bmatrix} A=⎣⎢⎢⎡23−31−8−90−46510810−26⎦⎥⎥⎤.
SOLUTION
- To simplify the arithmetic, we want a 1 in the upper-left corner. We could interchange rows 1 and 4. Instead, we factor out 2 from the top row, and then proceed with row replacements in the first column:
- Next, we could factor out another 2 from row 3 or use the 3 in the second column as a pivot. We choose the latter operation, adding 4 times row 2 to row 3:
推论: 方阵 A A A 可逆 ⇔ \Leftrightarrow ⇔ det A ≠ 0 \text{det}A\neq0 detA=0
- Formula (1) not only gives a concrete interpretation of
d
e
t
A
det\ A
det A but also proves the main theorem of this section:
Theorem 4 adds the statement “ d e t A ≠ 0 det\ A \neq 0 det A=0” to the Invertible Matrix Theorem. - A useful corollary is that
d
e
t
A
=
0
det\ A = 0
det A=0 when the columns of
A
A
A are linearly dependent. Also,
d
e
t
A
=
0
det\ A = 0
det A=0 when the rows of
A
A
A are linearly dependent.
- Rows of A A A are columns of A T A^T AT , and linearly dependent columns of A T A^T AT make A T A^T AT singular. When A T A^T AT is singular, so is A A A.
- In practice, linear dependence is obvious when two columns or two rows are the same or a column or a row is zero.
可以用求行列式的方法判断矩阵是否可逆
推论: 分块矩阵的行列式计算
EXAMPLE
Let A A A, B B B, C C C, D D D, and I I I be n × n n \times n n×n matrices. Use the definition or properties of a determinant to justify the following formulas.
SOLUTION
-
a
a
a,
b
b
b 都很简单,下面就只证明一下
c
c
c 的前一个等式 (后一个类似);下面分两种情况讨论:
- 若 A A A 不可逆,则 d e t A = 0 det\ A=0 det A=0. 同时对 A A A 作行等价变换一定可以形成 0 行,这样沿 0 行展开, d e t [ A 0 C D ] = 0 det\begin{bmatrix} A&0\\C&D \end{bmatrix}=0 det[AC0D]=0, 因此左右两式相等
- 若 A A A 可逆, A A A 的各行一定线性无关,因此 A A A 的各行生成 R n \mathbb R^n Rn,可以使用行倍加将 [ A 0 C D ] \begin{bmatrix} A&0\\C&D \end{bmatrix} [AC0D] 化简为 [ A 0 0 D ] \begin{bmatrix} A&0\\0&D \end{bmatrix} [A00D]。 A A A 和 D D D 又可分别化为上三角矩阵,这样对角线元素之积 = d e t A ⋅ d e t D = d e t [ A 0 C D ] =detA\cdot detD=det\begin{bmatrix} A&0\\C&D \end{bmatrix} =detA⋅detD=det[AC0D]
上面的三个结论可以直接使用
Proof of Thoerem 3
- It is convenient to prove Theorem 3 when it is stated in terms of the elementary matrices.
- We call an elementary matrix E E E a r o w row row r e p l a c e m e n t replacement replacement ( m a t r i x matrix matrix) if E E E is obtained from the identity I I I by adding a multiple of one row to another row;
- E E E is an i n t e r c h a n g e interchange interchange if E E E is obtained by interchanging two rows of I I I ;
- E E E is a s c a l e scale scale b y by by r r r if E E E is obtained by multiplying a row of I I I by a nonzero scalar r r r.
- With this terminology, Theorem 3 can be reformulated as follows:
d e t E A = ( d e t E ) ( d e t A ) detEA=(detE)(detA) detEA=(detE)(detA) w h e r e where where
- The proof is by induction on the size of
A
A
A.
- The theorem is obvious for the case of a 2 × 2 2 \times 2 2×2 matrix.
- Suppose the theorem has been verified for determinants of
k
×
k
k \times k
k×k matrices with
k
≥
2
k \geq 2
k≥2, let
n
=
k
+
1
n = k + 1
n=k+1, and let
A
A
A be
n
×
n
n \times n
n×n. The action of
E
E
E on
A
A
A involves either two rows or only one row. So we can expand
d
e
t
E
A
detEA
detEA across a row that is unchanged by the action of
E
E
E, say, row
i
i
i . Let
A
i
j
A_{ij}
Aij (respectively,
B
i
j
B_{ij}
Bij) be the matrix obtained by deleting row
i
i
i and column
j
j
j from
A
A
A (respectively,
E
A
EA
EA). Then the rows of
B
i
j
B_{ij}
Bij are obtained from the rows of
A
i
j
A_{ij}
Aij by the same type of elementary row operation that
E
E
E performs on
A
A
A. Since these submatrices are only
k
×
k
k \times k
k×k, the induction assumption implies that
d e t B i j = α ⋅ d e t A i j detB_{ij}=\alpha\cdot detA_{ij} detBij=α⋅detAijwhere α = 1 , − 1 \alpha = 1, -1 α=1,−1, or r r r, depending on the nature of E E E. The cofactor expansion across row i i i is
In particular, taking A = I n A = I_n A=In, we see that d e t E = 1 , − 1 detE = 1, -1 detE=1,−1, or r r r, depending on the nature of E E E.
Column Operations
- Because of Theorem 5, each statement in Theorem 3 is true when the word row is replaced everywhere by column. (i.e. column operations have the same effects on determinants as row operations)
PROOF
- Using the Principle of Mathematical Induction
- The theorem is obvious for n = 1 n = 1 n=1.
- Suppose the theorem is true for k × k k \times k k×k determinants and let n = k + 1 n = k + 1 n=k+1. Then the cofactor of a 1 j a_{1j} a1j in A A A equals the cofactor of a j 1 a_{j1} aj1 in A T A^T AT. Hence the cofactor expansion of d e t A det\ A det A along the first row equals the cofactor expansion of d e t A T det\ A^T det AT down the first column. That is, A A A and A T A^T AT have equal determinants.
- By the Principle of Mathematical Induction, the theorem is true for all n ≥ 1 n \geq 1 n≥1.
det A B = ( det A ) ( det B ) \text{det}AB=(\text{det}A)(\text{det}B) detAB=(detA)(detB)
- W a r n i n g \boldsymbol {Warning} Warning: A common misconception is that Theorem 6 has an analogue for sums of matrices. However, d e t ( A + B ) det(A + B) det(A+B) i s is is n o t not not equal to d e t A + d e t B det\ A + det\ B det A+det B, in general.
推论
- 若 A A A 可逆,则 d e t A − 1 = 1 d e t A detA^{-1}=\frac{1}{detA} detA−1=detA1
- 如果
A
A
A 为方阵, 则
∣
det
A
∣
|\text{det}A|
∣detA∣ 为
A
A
A 的奇异值的积
- Proof: ∣ d e t A ∣ = ∣ d e t ( U Σ V T ) ∣ = ∣ d e t U ⋅ d e t Σ ⋅ d e t V T ∣ = ∣ ± 1 ⋅ d e t Σ ⋅ ± 1 ∣ = d e t Σ |detA|=|det(U\Sigma V^T)|=|detU\cdot det\Sigma\cdot detV^T|=|\pm1\cdot det\Sigma\cdot \pm 1|=det\Sigma ∣detA∣=∣det(UΣVT)∣=∣detU⋅detΣ⋅detVT∣=∣±1⋅detΣ⋅±1∣=detΣ
Proof of Theorem 6
- If A A A is not invertible, then neither is A B AB AB. In this case, d e t A B = ( d e t A ) ( d e t B ) = 0 det AB =(det A)(detB)=0 detAB=(detA)(detB)=0.
- If
A
A
A is invertible, then
A
A
A and the identity matrix
I
n
I_n
In are row equivalent. So there exist elementary matrices
E
1
,
.
.
.
,
E
p
E_1,...,E_p
E1,...,Ep such that
A = E p , E p − 1 . . . E 1 ⋅ I n = E p , E p − 1 . . . E 1 A=E_p,E_{p-1}...E_1\cdot I_n=E_p,E_{p-1}...E_1 A=Ep,Ep−1...E1⋅In=Ep,Ep−1...E1Then repeated application of Theorem 3 shows that
A Linearity Property of the Determinant Function
行列式函数的一个线性性质
- For an n × n n \times n n×n matrix A A A, we can consider d e t A detA detA as a function of the n n n column vectors in A A A. We will show that if all columns except one are held fixed, then d e t A detA detA is a linear function of that one (vector) variable.
- Suppose that the
j
j
j th column of
A
A
A is allowed to vary, and write
Define a transformation T T T from R n \mathbb R^n Rn to R \mathbb R R by
Then,
This (multi-) linearity property of the determinant turns out to have many useful consequences that are studied in more advanced courses.
EXAMPLE
Compute d e t A det\ A det A, where
SOLUTION 1
- a. Subtract row 2 from row 1, row 3 from row 2, and so on.
- b. With the resulting matrix from part (a), add column 1 to column 2, then add this new column 2 to column 3, and so on.
- c. Find the determinant of the resulting matrix from (b).
d e t A = ( a − b ) n − 1 [ a + ( n − 1 ) b ] detA=(a-b)^{n-1}[a+(n-1)b] detA=(a−b)n−1[a+(n−1)b]
SOLUTION 2
- 观察到各行(列)的元素之和都相等,因此可以先将第 2 至 n n n 列都加到第 1 列,这样得到的新矩阵中第一列中每个元素都相等,再用每行都减第一行即可得到一个对角矩阵
SOLUTION 3
- Notice that A A A, B B B, and C C C are nearly the same except that the first column of A A A equals the sum of the first columns of B B B and C C C. A linearity property of the determinant function, says that d e t A = d e t B + d e t C detA = detB + detC detA=detB+detC. We can use this fact to prove the formula above by induction on the size of matrix A A A.