Chapter 5 (Limit Theorems): Convergence in Probability (依概率收敛)

本文为 I n t r o d u c t i o n Introduction Introduction t o to to P r o b a b i l i t y Probability Probability 的读书笔记

Convergence in Probability

  • We can interpret the weak law of large numbers as stating that " M n M_n Mn converges to μ μ μ". However. since M 1 , M 2 . . . . M_1, M_2 .... M1,M2.... is a sequence of random variables, not a sequence of numbers, the meaning of convergence has to be made precise.
    在这里插入图片描述在这里插入图片描述

  • Given this definition. the weak law of large numbers simply states that the sample mean converges in probability to the true mean μ μ μ.
  • More generally, the Chebyshev inequality implies that if all Y n Y_n Yn have the same mean μ μ μ, and v a r ( Y n ) var(Y_n) var(Yn) converges to 0, then Y n Y_n Yn converges to μ μ μ in probability.
  • If the random variables Y 1 , Y 2 , . . . . Y_1, Y_2, .... Y1,Y2,.... have a PMF or a PDF and converge in probability to a a a, then according to the above definition, almost all of the PMF or PDF of Y n Y_n Yn is concentrated within ϵ \epsilon ϵ of a for large values of n n n. It is also instructive to rephrase the above definition as follows: for every ϵ > 0 \epsilon > 0 ϵ>0, and for every δ > 0 \delta > 0 δ>0, there exists some n 0 n_0 n0 such that
    P ( ∣ Y n − a ∣ ≥ ϵ ) ≤ δ        f o r   a l l   n ≥ n 0 P(|Y_n-a|\geq\epsilon)\leq\delta\ \ \ \ \ \ for\ all\ n\geq n_0 P(Ynaϵ)δ      for all nn0
    • If we refer to ϵ \epsilon ϵ as the accuracy level (精度), and δ \delta δ as the confidence level (置信水平), the definition takes the following intuitive form: for any given levels of accuracy and confidence, Y n Y_n Yn will be equal to a a a, within these levels of accuracy and confidence, provided that n n n is large enough.

Example 5.6.

  • Consider a sequence of independent random variables X n X_n Xn that are uniformly distributed in the interval [ 0 , 1 ] [0, 1] [0,1], and let
    Y n = { X 1 , . . . , X n } Y_n=\{X_1,...,X_n\} Yn={X1,...,Xn}
  • In particular.
    lim ⁡ n → ∞ P ( ∣ Y n − 0 ∣ ≥ ϵ ) = lim ⁡ n → ∞ ( 1 − ϵ ) n = 0 \lim_{n\rightarrow\infty}P(|Y_n-0|\geq\epsilon)=\lim_{n\rightarrow\infty}(1-\epsilon)^n=0 nlimP(Yn0ϵ)=nlim(1ϵ)n=0Since this is true for every ϵ > 0 \epsilon > 0 ϵ>0, we conclude that Y n Y_n Yn converges to zero, in probability.

  • One might be tempted to believe that if a sequence Y n Y_n Yn converges to a number a a a, then E [ Y n ] E[Y_n] E[Yn] must converge to a a a.
    • The following example shows that this need not be the case, and illustrates some of the limitations (局限性) of the notion of convergence in probability.

Example 5.8.

  • Consider a sequence of discrete random variables Y n Y_n Yn with the following distribution:
    在这里插入图片描述在这里插入图片描述
  • For every ϵ > 0 \epsilon > 0 ϵ>0, we have
    lim ⁡ n → ∞ P ( ∣ Y n − 0 ∣ ≥ ϵ ) = lim ⁡ n → ∞ 1 n = 0 \lim_{n\rightarrow\infty}P(|Y_n-0|\geq\epsilon)=\lim_{n\rightarrow\infty}\frac{1}{n}=0 nlimP(Yn0ϵ)=nlimn1=0and Y n Y_n Yn converges to zero in probability.
  • On the other hand,
    E [ Y n ] = n 2 / n = n E[Y_n ] = n^2 /n = n E[Yn]=n2/n=nwhich goes to infinity as n n n increases.

Problem 5
Let X 1 , X 2 , . . . X_1,X_2, .. . X1,X2,... be independent random variables that are uniformly distributed over [ − 1 , 1 ] [-1, 1] [1,1]. Show that the sequence Y 1 , Y 2 . . . . Y_1, Y_2 .... Y1,Y2.... converges in probability to some limit, and identify the limit.
Y n = X 1 ⋅ X 2 . . . X n Y_n=X_1\cdot X_2... X_n Yn=X1X2...Xn
SOLUTION

  • We have
    E [ Y n ] = E [ X 1 ] . . . E [ X n ] = 0 E[Y_n] = E[X_1]...E[X_n] = 0 E[Yn]=E[X1]...E[Xn]=0Also
    v a r ( Y n ) = E [ Y n 2 ] = E [ X 1 2 ] . . . E [ X 2 n ] = v a r ( X 1 ) n = ( 4 12 ) n var(Y_n) = E[Y_n^2]= E[X_1^2]...E[X_2^n]= var(X_1)^n =(\frac{4}{12})^n var(Yn)=E[Yn2]=E[X12]...E[X2n]=var(X1)n=(124)nso v a r ( Y n ) → 0 var(Y_n)\rightarrow 0 var(Yn)0. Since all Y n Y_n Yn have 0 as a common mean, from Chebyshev’s inequality it follows that Y n Y_n Yn converges to 0 in probability.

Problem 6.
Consider two sequences of random variables X 1 , X 2 , . . . X_1, X_2, ... X1,X2,... and Y 1 , Y 2 , . . . Y_1, Y_2, ... Y1,Y2,..., which converge in probability to some constants. Let c c c be another constant. Show that c X n cX_n cXn, X n + Y n X_n + Y_n Xn+Yn, max ⁡ { 0 , X n } \max\{0, X_n \} max{0,Xn}, ∣ X n ∣ |X_n| Xn, and X n Y n X_nY_n XnYn all converge in probability to corresponding limits.

SOLUTION

  • Let x x x and y y y be the limits of X n X_n Xn and Y n Y_n Yn, respectively. Fix some ϵ > 0 \epsilon > 0 ϵ>0 and a constant c c c. If c = 0 c = 0 c=0, then c X n cX_n cXn equals zero for all n n n, and convergence trivially holds. If c ≠ 0 c\neq0 c=0, we observe that P ( ∣ c X n − c x ∣ ≥ ϵ ) = P ( ∣ X n − x ∣ ≥ ϵ / ∣ c ∣ ) P(|cX_n-cx|\geq \epsilon)=P(|X_n-x|\geq \epsilon/|c|) P(cXncxϵ)=P(Xnxϵ/c), which converges to zero, thus establishing convergence in probability of c X n cX_n cXn.
  • We note that
    P ( ∣ X n + Y n − x − y ∣ ≥ ϵ ) ≤ P ( ∣ X n − x ∣ ≥ ϵ / 2 ) + P ( ∣ Y n − y ∣ ≥ ϵ / 2 ) P(|X_n + Y_n-x-y|\geq\epsilon)\leq P(|X_n-x|\geq \epsilon/2)+P(|Y_n-y|\geq \epsilon/2) P(Xn+Ynxyϵ)P(Xnxϵ/2)+P(Ynyϵ/2)Therefore,
    lim ⁡ n → ∞ P ( ∣ X n + Y n − x − y ∣ ≥ ϵ ) ≤ lim ⁡ n → ∞ P ( ∣ X n − x ∣ ≥ ϵ / 2 ) + lim ⁡ n → ∞ P ( ∣ Y n − y ∣ ≥ ϵ / 2 ) = 0 \lim_{n\rightarrow\infty}P(|X_n + Y_n-x-y|\geq\epsilon)\leq \lim_{n\rightarrow\infty}P(|X_n-x|\geq \epsilon/2)+\lim_{n\rightarrow\infty}P(|Y_n-y|\geq \epsilon/2)=0 nlimP(Xn+Ynxyϵ)nlimP(Xnxϵ/2)+nlimP(Ynyϵ/2)=0
  • We have
    lim ⁡ n → ∞ P ( { ∣ max ⁡ { 0 , X n } − max ⁡ { 0 , x } ∣ ≥ ϵ } ) = lim ⁡ n → ∞ P ( { ∣ max ⁡ { 0 , X n } − max ⁡ { 0 , x } ∣ ≥ ϵ } ∣ x X n ≥ 0 ) P ( x X n ≥ 0 ) + lim ⁡ n → ∞ P ( { ∣ max ⁡ { 0 , X n } − max ⁡ { 0 , x } ∣ ≥ ϵ } ∣ x X n < 0 ) P ( x X n < 0 ) = lim ⁡ n → ∞ P ( { ∣ max ⁡ { 0 , X n } − max ⁡ { 0 , x } ∣ ≥ ϵ } ∣ x X n ≥ 0 ) \begin{aligned} &\lim_{n\rightarrow\infty}P(\{|\max\{0,X_n\}-\max\{0,x\}|\geq\epsilon\}) \\=&\lim_{n\rightarrow\infty}P(\{|\max\{0,X_n\}-\max\{0,x\}|\geq\epsilon\}|xX_n\geq0)P(xX_n\geq0)+\lim_{n\rightarrow\infty}P(\{|\max\{0,X_n\}-\max\{0,x\}|\geq\epsilon\}|xX_n<0)P(xX_n<0) \\=&\lim_{n\rightarrow\infty}P(\{|\max\{0,X_n\}-\max\{0,x\}|\geq\epsilon\}|xX_n\geq0) \end{aligned} ==nlimP({max{0,Xn}max{0,x}ϵ})nlimP({max{0,Xn}max{0,x}ϵ}xXn0)P(xXn0)+nlimP({max{0,Xn}max{0,x}ϵ}xXn<0)P(xXn<0)nlimP({max{0,Xn}max{0,x}ϵ}xXn0)
    • If x > 0 x>0 x>0, then
      lim ⁡ n → ∞ P ( { ∣ max ⁡ { 0 , X n } − max ⁡ { 0 , x } ∣ ≥ ϵ } ) = lim ⁡ n → ∞ P ( { ∣ X n − x ∣ ≥ ϵ } ∣ x X n ≥ 0 ) = 0 \lim_{n\rightarrow\infty}P(\{|\max\{0,X_n\}-\max\{0,x\}|\geq\epsilon\})=\lim_{n\rightarrow\infty}P(\{|X_n-x|\geq\epsilon\}|xX_n\geq0)=0 nlimP({max{0,Xn}max{0,x}ϵ})=nlimP({Xnxϵ}xXn0)=0
    • If x ≤ 0 x\leq0 x0, then
      lim ⁡ n → ∞ P ( { ∣ max ⁡ { 0 , X n } − max ⁡ { 0 , x } ∣ ≥ ϵ } ) = lim ⁡ n → ∞ P ( { 0 ≥ ϵ } ∣ x X n ≥ 0 ) = 0 \lim_{n\rightarrow\infty}P(\{|\max\{0,X_n\}-\max\{0,x\}|\geq\epsilon\})=\lim_{n\rightarrow\infty}P(\{0\geq\epsilon\}|xX_n\geq0)=0 nlimP({max{0,Xn}max{0,x}ϵ})=nlimP({0ϵ}xXn0)=0
    • Thus, we have
      lim ⁡ n → ∞ P ( { ∣ max ⁡ { 0 , X n } − max ⁡ { 0 , x } ∣ ≥ ϵ } ) = 0 \lim_{n\rightarrow\infty}P(\{|\max\{0,X_n\}-\max\{0,x\}|\geq\epsilon\})=0 nlimP({max{0,Xn}max{0,x}ϵ})=0
  • We have ∣ X n ∣ = max ⁡ { 0 , X n } + max ⁡ { 0 , − X n } |X_n| = \max\{0, X_n\}+\max\{0, -X_n\} Xn=max{0,Xn}+max{0,Xn}. Since max ⁡ { 0 , X n } \max\{0, X_n\} max{0,Xn} and max ⁡ { 0 , − X n } \max\{0, -X_n\} max{0,Xn} converge, it follows that their sum, ∣ X n ∣ |X_n| Xn, converges to max ⁡ { 0 , x } + max ⁡ { 0 , − x } = ∣ x ∣ \max\{0, x\}+\max\{0, -x\}=|x| max{0,x}+max{0,x}=x in probability.
  • Finally, we have
    P ( ∣ X n Y n − x y ∣ ≥ ϵ ) = P ( ∣ ( X n − x ) ( Y n − y ) + x Y n + y X n − 2 x y ∣ ≥ ϵ ) ≤ P ( ∣ ( X n − x ) ( Y n − y ) ∣ ≥ ϵ / 2 ) + P ( ∣ x Y n + y X n − 2 x y ∣ ≥ ϵ / 2 ) ≤ P ( ∣ X n − x ∣ ≥ ϵ / 2 ) P ( ∣ Y n − x ∣ ≥ ϵ / 2 ) + P ( ∣ x Y n + y X n − 2 x y ∣ ≥ ϵ / 2 ) \begin{aligned}P(|X_nY_n-xy|\geq\epsilon)&=P(|(X_n-x)(Y_n-y)+xY_n+yX_n-2xy|\geq\epsilon) \\&\leq P(|(X_n-x)(Y_n-y)|\geq\epsilon/2)+P(|xY_n+yX_n-2xy|\geq\epsilon/2) \\&\leq P(|X_n-x|\geq\sqrt{\epsilon/2})P(|Y_n-x|\geq\sqrt{\epsilon/2})+P(|xY_n+yX_n-2xy|\geq\epsilon/2)\end{aligned} P(XnYnxyϵ)=P((Xnx)(Yny)+xYn+yXn2xyϵ)P((Xnx)(Yny)ϵ/2)+P(xYn+yXn2xyϵ/2)P(Xnxϵ/2 )P(Ynxϵ/2 )+P(xYn+yXn2xyϵ/2)Since x Y n xY_n xYn and y X n yX_n yXn both converge to x y xy xy in probability. the last probability in the above expression converges to 0. It will thus suffice to show that
    lim ⁡ x → ∞ P ( ∣ X n Y n − x y ∣ ≥ ϵ ) ≤ 0 \begin{aligned}\lim_{x\rightarrow\infty}P(|X_nY_n-xy|\geq\epsilon)&\leq0\end{aligned} xlimP(XnYnxyϵ)0

Problem 7.
A sequence X n X_n Xn of random variables is said to converge to a number c c c in the mean square (均方收敛), if
lim ⁡ n → ∞ E [ ( X n − c ) 2 ] = 0 \lim_{n\rightarrow\infty}E[(X_n-c)^2]=0 nlimE[(Xnc)2]=0

  • (a) Show that convergence in the mean square implies convergence in probability.
  • (b) Give an example that shows that convergence in probability does not imply convergence in the mean square.

SOLUTION

  • ( a ) (a) (a) Suppose that X n X_n Xn converges to c c c in the mean square. Using the Markov inequality, we have
    P ( ∣ X n − c ∣ ≥ ϵ ) = P ( ( X n − c ) 2 ≥ ϵ 2 ) ≤ E [ ( X n − c ) 2 ] ϵ 2 P(|X_n-c|\geq\epsilon)=P((X_n-c)^2\geq\epsilon^2)\leq\frac{E[(X_n-c)^2]}{\epsilon^2} P(Xncϵ)=P((Xnc)2ϵ2)ϵ2E[(Xnc)2]Taking the limit as n → ∞ n\rightarrow\infty n. we obtain
    lim ⁡ n → ∞ P ( ∣ X n − c ∣ ≥ ϵ ) = 0 \lim_{n\rightarrow\infty}P(|X_n-c|\geq\epsilon)=0 nlimP(Xncϵ)=0
  • (b) In Example 5.8, we have convergence in probability to 0 but E [ Y 2 ] = n 3 E[Y^2] = n^3 E[Y2]=n3 , which diverges to infinity.
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值