生成扩散模型 (Diffusion Models)

理解 DDPM 的三种视角

DDPM = 拆楼 + 建楼

DDPM = 自回归式 VAE

DDPM = 贝叶斯 + 去噪

DDPM 实践经验

  • (1) 损失函数不能用 MSE,而必须用欧氏距离,两者的差别是 MSE 在欧氏距离基础上除以图片的宽 × × × × × × 通道数,这会导致损失值过小,部分参数的梯度可能会被忽略为0,从而导致训练过程先收敛后发散
  • (2) 归一化方式可以用 Instance Norm、Layer Norm、Group Norm 等,但不要用 Batch Norm,因为 Batch Norm 存在训练和推理不一致的问题,可能出现训练效果特别好,预测效果特别差的问题
  • (3) 网络结构没有必要照搬原论文,原论文是为了刷 SOTA 发论文,照搬的话肯定是又大又慢的,只需要按照 U-Net 的思路设计自编码器 (e.g. 特征拼接改为相加、去掉了Attention…),就基本上可以训练出个大概效果了,因为就相当于是个纯粹的回归问题,还是很好训练的
  • (4) 关于参数 t t t 的传入,原论文用了 Sinusoidal 位置编码,直接换为可训练的 Embedding,效果也差不多

DDPM 综合评价

优点

  • 容易训练,并且生成的图片也清晰。这个容易训练是相对 GAN 而言的,GAN 是一个 min-max 过程,训练中的不确定性很大,容易崩溃,而 DDPM 就纯粹是一个回归的损失函数,只需要纯粹的最小化,因此训练过程非常平稳

缺点

  • 首先最突出的就是采样速度太慢,需要执行模型 T T T (原论文 T = 1000 T=1000 T=1000 才能完成采样)
  • 其次,在 GAN 中,从随机噪声到生成样本的训练是一个确定性的变换,随机噪声是生成结果的一个解耦的隐变量,我们可以进行插值生成,或者对之编辑以实现控制生成等,但是 DDPM 中生成过程是一个完全随机的过程,两者没有确定性的关系,这种编辑生成就不存在了。DDPM 原论文虽然也演示了插值生成效果,但那只是在原始图片上进行插值的,然后通过噪声来模糊图片,让模型重新 “脑补” 出新的图片,这种插值很难做到语义上的融合

References

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值