图像检测指标

分类指标

主要有准确率(accuracy),精确率/查准率(precision),召回率/查全率(recall),PR曲线,混淆矩阵(confusion-matrix),F-score。

精确率(Precision), 召回率(Recall)

TP: True Positive,表示预测结果为正例,实际结果也为正例,即预测正确的正例;
FP: False Positive,表示预测结果为正例,实际结果为负例,即预测错误的正例,没有预测到的负例;
TN: True Negative,表示预测结果为负例,实际结果也为负例,即预测正确的负例;
FN: False Negative,表示预测结果为负例,实际结果为正例,即预测错误的负例,没有预测到的正例;

TP: 正确预测正样本
TN:正确预测负样本
FN:错误的认为是负样本
FP:错误的认为是正样本
召回率:所有实际为正的中预测为正的概率
精确率:所有预测为正的中预测正确的概率
在这里插入图片描述
在这里插入图片描述
精确率和召回率是二分类指标,并不不适用于多分类,由此得到P-R曲线也是二分类评估指标,因此如果需要计算多分类的Precision和Recall,我们需要指定某一类别标签作为Positive,而其他的类别则均为Negative,从而将问题转化为二分类问题,然后计算出相应类别的Precision和Recall.

精确率——找的对(所有预测中成功的比例) confusion matrix第一层
召回率——找的全(所有目标中成功找到的个数) confusion matrix第一列
理想情况下,精确率和召回率两者都越高越好。然而事实上这两者在某些情况下是矛盾的,精确率高时,召回率低;精确率低时,召回率高

混淆矩阵(Confusion Matrix)

混淆矩阵表示的是模型在测试集上所有预测结果的统计,对角线上的数值表示的是该类别预测正确的样本数:
在这里插入图片描述
在这里插入图片描述

第一行表示ground truth标签
第一列表示预测出的标签
举例,预测为label1的17个物体中,有12个是label1物体,2个label2物体,1个label1物体,2个label4物体
对角线为预测正确数

准确率(Accuracy)

准确率(accuracy)是一个全局指标,既适用于二分类评估,也适用于多分类评估。其计算方式为将所有预测正确的样本数除以所有的样本数
在这里插入图片描述

F-score

F-score是关于精确率(Precision)和Recall(Recall)的一个评估指标,是对精确率和召回率赋不同权值进行加权调和
在这里插入图片描述

AP

Average Precision即平均精确度

mAP

mAP 即 Mean Average Precision即平均AP值,是对多个验证集个体求平均AP值,作为 object dection中衡量检测精度的指标。

PR曲线

以 precision和 recall作为纵、横轴坐标的二维曲线。通过选取不同阈值时对应的精度和召回率画出
P-R曲线围起来的面积就是AP值,通常来说一个越好的分类器,AP值越高
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值