Communication-efficient asynchronous federated learning inresource-constrained edge computing

文献来源

Computer Networks
journal homepage: www.elsevier.com/locate/comnet
文献作者
Jianchun Liu a , Hongli Xu b , , Yang Xu b , , Zhenguo Ma b , Zhiyuan Wang b , Chen Qian c , He Huang d
发表日期2021

目录

一、摘要

背景

贡献

二、介绍

1.边缘学习

2.联邦学习

3.联邦学习的两种方案

 4. CE-AFL

 5.SQP-PA

三、性能评估

1. baseline

2. 单任务学习

3.α的确定

4. 多任务学习


一、摘要

联邦学习(FL)已被广泛应用于边缘计算中在大量数据上训练机器学习模型。然而,现有的FL解决方案可能会导致训练时间长或高资源(例如,带宽)成本,因此不能直接应用于资源受限的边缘节点,如基站和接入点。在本文中,我们提出了一种新的通信高效异步联邦学习(CE-AFL)机制,在该机制中,参数服务器将只聚合所有边缘节点在每个边缘节点的0<𝛼<1。研究证明,我们设计了有效的算法,在带宽约束下确定两种CE-AFL、单任务学习和多任务的𝛼的最优值。有效证明了该算法的收敛性。通过在JetsonTX2、深度学习工作站和广泛的实验来评估我们算法的性能。在经典模型和数据集上的实验结果和仿真结果都表明了我们所提出的机制和算法的有效性。例如,与最先进的解决方案相比,CE-AFL可以减少约69%的训练时间,同时达到相似的精度,即使在资源受限情况下训练模型的精度也提高约18%。

背景

  • 边缘节点带宽、内存、计算等资源有限
  • 数据不平衡性
  • 边缘节点不确定性

贡献

  • 设计了一种通信效率高的异步联邦学习(CE-AFL)的边缘计算机制,并正式证明了CE-AFL的收敛性。
  •  我们提出了有效的算法来确定两种CE-AFL、单任务学习和多任务学习的𝛼最优值,从而在带宽约束下实现更少的训练时间。并证明了该算法的收敛性。
  • 在经典模型和数据集上的大量实验表明了所提出的机制和算法的有效性。与最先进的解决方案相比,CE-AFL算法机制可以在资源约束下将训练时间减少约69%,并将训练模型的精度提高18%。

二、介绍

1.边缘学习

2.联邦学习

3.联邦学习的两种方案

  • 同步学习

从所有指定边缘节点接收在本地训练过的模型,中央服务器将聚合这些本地模型,对全局模型进行更新并将更新后的参数发送边缘节点(all?)

缺点❌

  1. 训练时间取决于所有边缘节点之间最大的训练时间
  2. 所有边缘节点更新的本地模型将经常转发到中央服务器,在同步方案中聚合,这将消耗大量的网络带宽。
  • 异步学习

第二种方法是在边缘进行异步联邦学习,它允许部分(不是所有)工作者将更新后的模型转发到参数服务器上,以便在每个时期进行模型聚合。由于不需要参数服务器等待来自所有边缘节点的本地更新,因此与同步方案相比,该方案可以很好地处理数据不平衡。

 4. CE-AFL

  • 算法描述

  •  对比同步FL

其中,α=1/2,当收到两个workes的本地模型更新时,则全局就更新一次,很明显 CE-AFL更新次数要大于同步FL。换句话说,就是在相同的时间预算约束下,CE-AFL将比同步方案执行更多的全局更新和收敛速度更快。

Problem(模型陈旧):在t1、t2阶段已经收到了来自worker1 2 4 的数据更新但是从来没有收到3的数据,。为了减轻延迟更新影响引入了延迟补偿的机制。MG表示当前全局模型更新,𝑀𝑖,∀𝑖∈{1,…,4},表示最新的本地更新模型。在服务器收到两次来worker#1的本地模型后,模型𝑀1将用衰减系数𝜍进行更新,

 提出了四种假设并证明了该算法具有收敛性。

5.SQP-PA

  •  算法描述

三、性能评估

1. baseline

  • ADP-FL: 属于同步FL方案。在一个epcho中,服务器可以通过线性搜索自适应地确定本地更新的数量,以尽量减少给定资源预算下的损失函数。

  • AFO:异步联邦优化算法

2. 单任务学习

The number of training epochs by CE-AFL is significantly fewer than that of AFO. For example, with CNN training over the FMNIST dataset, the number of required epochs by CE-AFL (𝛼 = 0 . 3 ) and AFO is about 590 and 1880, respectively.

3.α的确定

 

4. 多任务学习

improve the minimum accuracy by about 8% and 18% compared with ADP-FL and AFO, respectively.
因此,与AFO和ADP-FL相比,所提出的CE-AFL框架可以将最小精度分别提高约9%和5%。这些结果表明,在资源约束条件下,与两种基准测试相比,CE-AFL可以显著提高分类精度。

 

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值