python 标签保留小数 画图_python绘图总结

本文详细介绍了Python中matplotlib, pandas和seaborn库的绘图方法,包括面向对象、子图创建、全局设置、颜色系统等方面,并提供了丰富的代码示例。通过这些库,可以方便地进行数据可视化,包括柱状图、折线图、散点图等,并且能够灵活设置图形的样式和颜色。" 119990497,11313741,C语言实现等腰字符三角形,"['C语言', '编程题', '字符操作']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文主要包括python绘图中的matplotlib, pandas, seaborn三个部分。matplotlib分为如下几个主题中文支持

plt示例代码

面向对象

创建子图

全局设置

颜色系统

backend设置

循环作图

plt不输出对象

首先导入基本模块

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

本文代码在jupyter notebook中运行,最后一行魔法命令,可以在画图时结尾不需要plt.show()

中文支持

plt.rcParams['font.sans-serif'] = ['FangSong']

plt.rcParams['axes.unicode_minus'] = False

plt示例代码

用pyplot模块作图非常简单,这里用一个例子展示各个位置的设置方式

bar1 = [4, 5, 6, 8, 7]

bar2 = [7, 6, 2, 5, 4]

labels = ['小明', '小张', '小洪', '小红', '小铭']

bar_width = 0.35

plt.bar(np.arange(5)-0.5*bar_width, bar1, label='第一次',

width=bar_width, color='#58C9B9')

plt.bar(np.arange(5)+0.5*bar_width, bar2, label='第二次',

width=bar_width, color='#519D9E')

plt.xlabel('人名', fontsize=15)

plt.ylabel('数量', fontsize=15)

plt.title('数量统计', fontsize=18)

plt.ylim([0, 10])

plt.legend()

plt.xticks(np.arange(5), labels, fontsize=13)

plt.box(False)

plt.grid(color='0.4', axis='y', linestyle='solid', alpha=0.1)

for i, j in enumerate(bar1):

plt.text(i-0.5*bar_width-0.05, j+0.1, str(j))

for i, j in enumerate(bar2):

plt.text(i+0.5*bar_width-0.05, j+0.1, str(j))

plt.savefig('fig.pdf', bbox_inches='tight')

其中plt.bar第一个参数是横轴坐标;plt.xticks第一个参数也是横坐标列表,指定在哪些横坐标上标刻度。

绘制各种图形的代码示例可以参考官网

面向对象

Matplotlib中常⽤对象的包含关系为Figure > Axes > (Line2D, Text,etc.)。Figure对象表示一整张图表;其中可包含多个绘图区域,可以理解为多个坐标轴,用Axes表示,也可以称之为子图;在每一个子图中绘制具体的图形对象,如点、线、文本等。

很多情况下直接使用pyplot模块就够用了,但是当有多个图和坐标系时,使用面向对象的创建方式可以更加自由地在子图之间进行切换。

对象的创建

fig = plt.figure()

axes = fig.add_subplot(1, 1, 1)

axes.plot([1, 2, 3])

axes创建后使用方法与plt没有很大的区别,但是还是会有一些差别,比如标题坐标轴的设置

面向对象与plt的差异

axes.set_title('title')

axes.set_xlabel('x')

axes.set_ylabel('y')

plt.title('title')

plt.xlabel('x')

plt.ylabel('y')

有的函数只能由axes调用而不能用plt,比如画多边形时的add_patch

fig = plt.figure()

axes = fig.add_subplot(1, 1, 1)

axes.plot([1, 2, 3])

poly = plt.Polygon([[0.5, 1], [1, 1.5], [1, 1]],

facecolor='0.9', edgecolor='0.5')

axes.add_patch(poly)

面向对象与plt的相互转化

但是有时本来只是在用plt作图,为了用add_patch而特意创建一个axes就比较麻烦,此时可以用plt.gca()获取当前的Axes对象

plt.plot([1, 2, 3])

poly = plt.Polygon([[0.5, 1], [1, 1.5], [1, 1]],

facecolor='0.9', edgecolor='0.5')

plt.gca().add_patch(poly)

下面一个例子很好地展现了图表之间的切换

plt.figure(1)

plt.figure(2)

ax1 = plt.subplot(211)

ax2 = plt.subplot(212)

x = np.linspace(0, 3, 100)

for i in range(1, 4):

plt.figure(1)

plt.plot(x, np.exp(i*x/3))

plt.sca(ax1)

plt.plot(x, np.sin(i*x))

plt.sca(ax2)

plt.plot(x, np.cos(i*x))

说明plt.figure(1)其中的数字用于图之间的区分,这个函数调用第一次表示创建id为1的图(Figure对象),调用第二次表示切换到这个图上,这样之后调用plt就会自动在这个图中绘制

plt.sca表示切换到该Axes对象,这样之后调用plt就会自动在这个子图中绘制

上述方法完全使用plt来完成,虽然可以做,但可读性较差,下面使用对象来完成会更加清晰。

fig1, ax0 = plt.subplots(1, 1)

fig2, (ax1, ax2) = plt.subplots(2, 1)

x = np.linspace(0, 3, 100)

for i in range(1, 4):

ax0.plot(x, np.exp(i*x/3))

ax1.plot(x, np.sin(i*x))

ax2.plot(x, np.cos(i*x))

Axes设置

Axes对象设置坐标轴、标题的相关方法一般分为以set为前缀与get前缀两种,但不是一一对应的,有的方法只有get而没有set,展示一部分方法如下

Axes.set_xlim

Axes.get_xlim

Axes.set_xlabel

Axes.set_xticks

Axes.set_xticklabels

Axes.get_xticklines

从get的结果可以看出,一张图是由很多基础对象构成的。比如一个折线图,不仅折线是Line2D对象,而且Axes.get_xticklines的结果也是Line2D,而get_xticklabels是Text对象,一整张图就是由这些基础对象拼凑而成的。

常见的设置方式有如下几种

fig, ax = plt.subplots()

ax.plot([1, 2, 3])

ax.set_title('title')

ax.set_xlabel('x')

ax.set_ylabel('y')

labels = ax.get_xticklabels()

plt.setp(labels, rotation=45, horizontalalignment='right')

# ax.set(title='title', xlabel='x', ylabel='y')

更多设置内容参考官网Axes API和博客(setp和getp的用法)。

关于setp和getp多说一句,下面展示几组等价做法

ax.get_xaxis()

plt.getp(ax, 'xaxis')

ax.set_xlabel('x')

plt.setp(ax, 'xlabel', 'x')

plt.setp(ax.lines[0],'color','g')

ax.get_lines()[0].set_color('g')

只要Axes类中定义了get_xxx方法,就可以用getp;定义了set_xxx方法,就可以用setp。line2D等其他类也是一样。这些类都可以在官网API中找到。所以任何对象都可以去找API看有哪些属性可以设置。此外,get既可以查找参数值也查找对象,比如lines隶属于axes,就可以由后者调用出前者,matplotlib中各种类的隶属关系可以参考之前提到的那篇绘图: matplotlib核心剖析。

创建子图

matplotlib中规则排版的子图有多种设置方式

# 第一种

plt.subplot(211)

plt.plot([1, 2, 3, 4])

plt.subplot(212)

plt.scatter([1,2,3,4], [3,4,2,1])

# 第二种(可以配合循环使用)

plt.subplot(1, 2, 1)

plt.plot([1, 2, 3, 4])

plt.subplot(1, 2, 2)

plt.scatter([1,2,3,4], [3,4,2,1])

# 第三种

fig = plt.figure()

ax1 = fig.add_subplot(2,1,1)

ax2 = fig.add_subplot(2,1,2)

# 第四种

ax1 = plt.subplot(211)

ax2 = plt.subplot(212)

# 第五种

fig, (ax1, ax2) = plt.subplots(1, 2, sharey=True)

# 第六种

fig, axes = plt.subplots(2, 2, figsize=(10, 8))

for ax in axes.flatten():

pass

更复杂的排版可以参考官网

全局设置

套用主题

plt.style.use('ggplot')

plt.style.use('default')

print(plt.style.available)

with plt.style.context(('dark_background')):

plt.plot(np.sin(np.linspace(0, 2 * np.pi)), 'r-o')

主题效果展示,自定义主题可以在stylelib文件夹中创建.mplstyle文件,有哪些参数可以参考下一节,参考官网。

全局修改

import matplotlib as mpl

mpl.rcParams['lines.linewidth'] = 2

mpl.rcParams['lines.color'] = 'r'

mpl.rcdefaults()

mpl.rcParams类似字典,里面存有所有当前参数设置,可以直接修改。用plt.rcParams也可。

其他修改方法

# 第一种

mpl.rc('lines', linewidth=2, color='r')

# 第二种

with mpl.rc_context(rc={'lines.linewidth': 1}):

plt.plot(np.sin(np.linspace(0, 2 * np.pi)), 'r-o')

坐标轴全局设置

类似这样设置

Axes.tick_params(direction='out', length=6, width=2, colors='r',

grid_color='r', grid_alpha=0.5)

颜色系统

调用颜色有以下几种方法使用颜色名称

RGB/RGBA或hex

0-1数字字符串

CN主题颜色板

色板

多种颜色

使用颜色名称

颜色名称有4种使用方式

1.常规颜色

plt.plot([1, 2, 3], color='red')

所有名称共148种,常用的颜色名称都可以直接使用。可以用下面的命令查看

import matplotlib._color_data as mcd

mcd.CSS4_COLORS

2.xkcd颜色

在正常颜色名称前面加上xkcd:,一共949种,用下面命令查看

import matplotlib._color_data as mcd

mcd.XKCD_COLORS

上面两类的同名颜色展示可以参考官网。

3.简写

常用颜色名称还有简写,可以选择这些中的一个

{'b', 'g', 'r', 'c', 'm', 'y', 'k', 'w'}

4.Tableau

Tableau颜色可以从下面字符串中选择

{'tab:blue', 'tab:orange', 'tab:green', 'tab:red', 'tab:purple', 'tab:brown', 'tab:pink', 'tab:gray', 'tab:olive', 'tab:cyan'}

RGB/RGBA或hex

一个三元或四元的列表(元组、np.array等都可以),三元表示RGB: red green blue,四元表示RGBA: red green blue alpha,其中alpha表示透明度。数值都要在0-1之间,如果是0-255的整数要先除以255.

plt.plot([1, 2, 3], color=[0.3, 0.5, 0.6])

plt.plot([1, 2, 3], color=[0.3, 0.5, 0.6, 0.2])

plt.plot([1, 2, 3], color='#0F0F0F')

plt.plot([1, 2, 3], color='#0F0F0F40')

0-1数字字符串

plt.plot([1, 2, 3], color='0.7')

黑色半透明,值越大越透明。

CN主题颜色板

这是主题内置的颜色集,同样指定C1,使用ggplot主题和seaborn主题得到的颜色就是不一样。这也是使用该主题时默认使用的颜色。由主题配置文件中的axes.prop_cycle参数控制的,可以用mpl.rcParams调用显示,也可以修改。

import matplotlib as mpl

with plt.style.context(('ggplot')):

plt.plot([1, 2, 3], color='C0')

plt.plot([6, 2, 3], color='C1')

print(mpl.rcParams['axes.prop_cycle'])

上述内容参考官网

色板

1.色板的使用

n = 5

cmap = plt.cm.get_cmap('Set1', n)

for i in range(n):

print(cmap(i))

结果为

(0.8941176470588236, 0.10196078431372549, 0.10980392156862745, 1.0)

(0.30196078431372547, 0.6862745098039216, 0.2901960784313726, 1.0)

(1.0, 0.4980392156862745, 0.0, 1.0)

(0.6509803921568628, 0.33725490196078434, 0.1568627450980392, 1.0)

(0.6, 0.6, 0.6, 1.0)

其中cmap包含5种颜色,通过cmap(i)调用得到RGBA格式的颜色,这5种颜色来源于色板Set1。cmap也可以接小数。

2.所有内置色板

要查看所有色板可以用下面这条命令

import matplotlib.cm

print(matplotlib.cm.cmap_d.keys())

所有色板的颜色展示参考官网

3.其他调用方式

# 连续型色板

cmap = plt.cm.get_cmap('BrBG')

for i in range(10):

print(cmap(i))

import matplotlib as mpl

cmap = mpl.cm.BrBG

for i in range(10):

print(cmap(i))

# 离散型色板

import matplotlib as mpl

cmap = mpl.cm.Set1

cmap.colors

4.cmap对象设置

cmap对象可以进一步设置,比如颜色上下限等,方法参考官网

5.自定义cmap对象

import matplotlib as mpl

cmap = mpl.colors.ListedColormap(['red', 'green', 'blue', 'cyan'])

for i in range(4):

print(cmap(i))

可以用这个思路对原色板进行修改,详情可以参考官网,渐变色的创建可以参考stackoverflow

多种颜色

以画点图为例,要作一个点图,所有点的颜色不同,有三种方法c参数接一个和点数量等长的可迭代对象

一个点一个点来画

数字配合色板

1.可迭代对象

# 使用颜色简称

data = np.random.rand(5,2)

plt.scatter(data[:, 0], data[:, 1], c='rrbyb')

# 使用rgb三值向量,所以c参数就要接一个5*3的矩阵

data = np.random.rand(5,2)

plt.scatter(data[:, 0], data[:, 1], c=np.random.rand(5,3))

2.一个一个点来画

# rgb三值向量表示颜色

for x, y in np.random.rand(10,2):

plt.scatter(x, y, c=np.random.rand(3, ))

3.整数配合色板

指定色板则c参数可以接一个数字

data = np.random.rand(5,2)

cmap = plt.cm.get_cmap('hsv', 5)

plt.scatter(data[:, 0], data[:, 1],

c=list('12345'), cmap=cmap)

backend设置

有的服务器没有图形显示界面,画图代码如果不加设置,会请求显示图片而报错,此时可以用下面两种方式设置

# 这两行需要在导入plt之前

import matplotlib as mpl

mpl.use('agg')

import matplotlib.pyplot as plt

或者这样

import matplotlib.pyplot as plt

plt.switch_backend('agg')

循环作图

1、 jupyter中循环画线图,默认会全画在一张图里,如果想每张图都堆到下面,只要加个plt.show()

for i in range(3):

plt.plot([1,2,i])

plt.show()

2、 动态图。在同一个位置,循环展示一些图片,像播放幻灯片一样

import time

from IPython import display

for i in range(3):

plt.plot([1,2,i])

plt.show()

display.clear_output(wait=True)

time.sleep(0.5)

3、 循环大量作图不需要展示但要保存时,有时会出现这种情况:

RuntimeWarning: More than 20 figures have been opened.

并不是所有循环作图都会出现这个问题,因此在这里记录一下什么时候会出现,出现了该如何解决。比如下面这种情况就不会出现

for i in range(30):

plt.plot([1, 2, 3])

plt.savefig('{}.png'.format(i))

只有当你创建了图时才会出现,比如作图时想用axes,然后就创建了图,如下所示

for i in range(30):

fig, ax = plt.subplots(1, 1, figsize=(10, 10))

ax.imshow(data)

ax.add_artist(plt.Rectangle((2, 3), 20, 20, fill=False, color='g'))

plt.savefig('images/{}.png'.format(i), bbox_inches='tight')

这时就会报那个warning;即使在无图形界面的服务器上,backend设置成了agg,也会报这个warning。这个warning是说我们打开了太多figure没有关闭,所以处理办法就是加一个plt.close()来解决,如下所示

for i in range(30):

fig, ax = plt.subplots(1, 1, figsize=(10, 10))

ax.imshow(data)

ax.add_artist(plt.Rectangle((2, 3), 20, 20, fill=False, color='g'))

plt.savefig('images/{}.png'.format(i), bbox_inches='tight')

plt.close()

当然,如果axes的位置都换成plt.gca(),不需要第一步创建图,则也不需要close。

plt不输出对象

在 jupyter notebook 交互模式下,plt作图前会输出对象,例如下面代码

plt.hist([1,2,3,4,5])

会在作图之前产生下面这些输出

(array([1., 0., 1., 0., 0., 1., 0., 1., 0., 1.]),

array([1. , 1.4, 1.8, 2.2, 2.6, 3. , 3.4, 3.8, 4.2, 4.6, 5. ]),

)

如果不想出现这些,有如下几种方法

# 1. 加分号

plt.hist([1,2,3,4,5])

# 2. 赋值

_ = plt.hist([1,2,3,4,5])

# 3. 调用 plt.show()

plt.hist([1,2,3,4,5])

plt.show()

pandas绘图

特点总结Series和DataFrame对象都可以调用plot方法进行作图,默认是折线图,可以通过kind参数改为其他类型,也可以调用类似df.plot.bar这样的方法

多列数据框会用不同颜色将每一列画进同一张图片中,实现类似分组作图的效果,但这不算是自动分组作图。其他方式比如配合groupby或set_index的方式,都相当于弄出多列再画上去,无法做到直接这样设置参数color=x实现分组。

matplotlib中的全局参数、主题、颜色在这里都适用。也可以结合plt与面向对象一起使用。

具体代码可以参考官网

seaborn绘图

seaborn最大的优势是可以将变量传给color等参数实现分组作图。举一个最简单的例子

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

sns.set(style="darkgrid")

sns.relplot(x="total_bill", y="tip", hue="smoker", data=tips);

面向对象

这是一种操作办法

f, (ax1, ax2) = plt.subplots(2)

sns.regplot(x, y, ax=ax1)

sns.kdeplot(x, ax=ax2)

另一种是利用返回的对象

data = np.random.normal(size=(20, 6)) + np.arange(6) / 2

ax = sns.boxplot(data=data)

ax.set_title('abc')

tips = sns.load_dataset("tips")

grid = sns.relplot(x="total_bill", y="tip", hue="smoker", data=tips)

grid.axes[0,0].set_title('abc')

色板的使用

使用色板

# 展示颜色

sns.palplot(sns.light_palette("green"))

# 调用颜色1

set1 = sns.color_palette("Set1", 2)

sns.relplot(x="total_bill", y="tip", hue="smoker",

palette=set1, data=tips)

# 调用颜色2

with sns.color_palette("Set1"):

sns.relplot(x="total_bill", y="tip", hue="smoker", data=tips)

# 全局设置

sns.set_palette("husl")

主题设置

主题全局设置

sns.set(style="darkgrid")

sns.set_style("darkgrid", {"axes.facecolor": ".9"})

# 恢复默认

sns.set()

局部设置

with sns.axes_style("white"):

sns.relplot(x="total_bill", y="tip", hue="smoker", data=tips)

共有5种主题

darkgrid(默认)

whitegrid

dark

white

ticks

一些细节参数可以用下面命令查到

sns.axes_style()

参数主题有四种

notebook(默认)

paper

talk

poster

用下面方式设置

sns.set_context("paper")

资料推荐

专栏信息

专栏目录:目录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值