Java高级编程精要:袁尚星的30日速成教程

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:本压缩包提供了一系列关于Java高级编程的学习资料,由讲师袁尚星精心设计。内容涵盖日期处理、字符串操作和数据结构等关键知识点。学习者将通过Java的日期和时间API(如 java.util.Date java.time 包)、字符串类方法(如 concat() , indexOf() 等)以及基本和复杂数据结构(如数组、链表、树和图)的代码示例,来深入理解并提升自己的Java编程技能。 30-袁尚星-Java高阶.zip

1. Java日期和时间处理

Java作为一个成熟的编程语言,对于日期和时间的处理一直备受重视。从早期的 Date Calendar 类到Java 8中引入的全新的日期时间API,Java提供了丰富的类和接口来满足开发者对日期和时间的操作需求。本章节将从浅入深地探讨Java中处理日期和时间的基本方式和最佳实践,帮助读者理解如何在不同的业务场景中选择合适的日期时间处理方法。

1.1 Java日期时间处理概述

在Java中,日期和时间的处理可以大致分为三个阶段:

  • 早期API java.util.Date java.util.Calendar 类在早期版本中是处理日期时间的主要方式。
  • 过渡API java.util.GregorianCalendar 类和 java.util.TimeZone 类提供了更为通用的日历系统和时区处理。
  • 全新API :Java 8 引入的 java.time 包下的类,如 LocalDate LocalDateTime ZonedDateTime 等,以及 DateTimeFormatter 提供了更为清晰、灵活和健壮的日期时间处理方案。

1.2 Java 8 新日期时间API特性

Java 8 新引入的日期时间API基于ISO 8601日历系统,并且是不可变的。这些API是线程安全的,并且通过面向对象的方式将日期、时间和时区表示为对象。主要特性包括:

  • 明确的日期和时间概念 :区分了日期、时间、日期时间、时区等概念。
  • 不可变性 :一旦创建,对象就不能更改,这有助于创建线程安全的代码。
  • 流畅的API设计 :API设计紧凑,易于阅读和编写。
  • 时区支持 :内置时区支持,能够处理不同时区的日期和时间。

1.3 从旧API到新API的迁移

由于新旧API在设计思想和使用方法上存在较大的差异,开发者在进行Java项目时,从旧的日期时间API迁移到Java 8的新API时需要注意以下几点:

  • API替代 Date Calendar 等旧类可以通过 Instant LocalDate 等新API替代。
  • 格式化和解析 :使用 DateTimeFormatter 替代 SimpleDateFormat
  • 时区处理 :使用 ZoneId ZonedDateTime 代替 TimeZone Calendar 来处理时区。
// 示例:使用Java 8新API进行日期和时间的处理
LocalDate date = LocalDate.now(); // 获取当前日期
LocalTime time = LocalTime.now(); // 获取当前时间
LocalDateTime dateTime = LocalDateTime.of(date, time); // 组合日期和时间
DateTimeFormatter formatter = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss");
String formattedDateTime = dateTime.format(formatter); // 格式化日期时间

在这一章节中,我们简要介绍了Java中处理日期和时间的发展历程,并重点讲解了Java 8的新API。随着技术的不断迭代更新,掌握这些新的日期时间API对于提升开发效率和保证代码质量至关重要。下一章我们将继续深入探讨字符串操作的基础与高级技巧,帮助您在处理文本数据时更加得心应手。

2. 字符串操作基础与高级技巧

2.1 字符串基础操作

2.1.1 字符串的创建和初始化

在Java中,字符串是一个不可变的字符序列,它是一个特殊的数据类型。在Java中创建字符串有多种方式,最常见的是直接使用双引号创建字符串字面量。

String str1 = "Hello, World!";

以上代码创建了一个字符串对象 str1 ,其内容为"Hello, World!"。Java虚拟机会检查字符串常量池中是否已存在相同内容的字符串对象,如果存在,则返回对该对象的引用,否则会在常量池中创建新的字符串对象。

除了直接赋值,我们还可以使用 String 类提供的 constructor 来创建字符串对象,或者通过 StringBuilder StringBuffer 类来创建和修改字符串。

String str2 = new String("Hello, World!"); // 使用构造函数创建字符串对象
StringBuilder strBuilder = new StringBuilder("Hello, ");
String str3 = strBuilder.append("World!").toString(); // 通过StringBuilder创建字符串

2.1.2 字符串的常见方法和应用

字符串提供了大量有用的方法,用于处理文本数据。例如,我们可以使用 charAt 方法获取字符串中指定位置的字符:

char letter = "Hello, World!".charAt(7); // 获取索引为7的字符,即 'W'

字符串比较也是一个常见的操作,可以使用 equals 方法来比较两个字符串是否内容相等:

boolean isEquals = "Hello, World!".equals("Hello, World!"); // 返回 true

另外, indexOf substring replace toLowerCase toUpperCase 等方法,都是日常开发中经常使用的字符串操作方法。

int index = "Hello, World!".indexOf(","); // 返回第一个逗号的索引,即 5
String subStr = "Hello, World!".substring(0, 5); // 返回从索引0到5(不包括5)的子字符串,即 "Hello"

2.2 高级字符串处理技巧

2.2.1 正则表达式在字符串中的应用

正则表达式是一种强大的文本处理工具,Java通过 Pattern Matcher 类支持正则表达式的操作。例如,我们可以使用正则表达式来查找字符串中符合模式的所有子串。

import java.util.regex.Pattern;
import java.util.regex.Matcher;

public class RegexExample {
    public static void main(String[] args) {
        String text = "Hello, World!";
        Pattern pattern = Pattern.compile("[a-zA-Z]+"); // 匹配所有字母序列
        Matcher matcher = pattern.matcher(text);
        while (matcher.find()) {
            System.out.println(matcher.group()); // 输出匹配到的字符串
        }
    }
}

以上代码将输出 Hello World ,因为这两个词都符合正则表达式定义的模式。

2.2.2 字符串与数组、集合的转换技巧

字符串可以很容易地转换成字符数组,反之亦然。这对于需要在字符串和数组之间进行频繁转换的场景非常有用。

char[] charArray = "Hello".toCharArray(); // 字符串转字符数组
String newString = new String(charArray); // 字符数组转字符串

而字符串与集合之间的转换通常涉及到字符串分割,可以使用 split 方法,然后将结果存储到列表或集合中。

String[] stringArray = "a,b,c".split(",");
List<String> list = new ArrayList<>(Arrays.asList(stringArray));
Set<String> set = new HashSet<>(Arrays.asList(stringArray));

在处理数据时,常常需要进行这些转换,比如从文件中读取数据后进行解析等操作。转换技巧能够帮助我们在数据处理流程中更加灵活地处理字符串。

在接下来的内容中,我们将继续探索和分析Java编程中更加深入和高级的字符串操作技巧以及数据结构的应用。

3. 基础数据结构应用

3.1 数组和集合的使用

3.1.1 数组的基本用法和特性

数组是一种基本的数据结构,它存储一系列相同类型的元素,并提供通过整数索引快速访问这些元素的能力。数组在内存中是连续分配的,这使得它们在读取和写入操作上非常高效,但同时也意味着其大小不可改变。在Java中,数组的大小必须在声明时或在静态初始化代码块中指定。

数组的声明格式如下:

int[] numbers; // 声明一个整型数组

初始化数组:

numbers = new int[5]; // 创建一个长度为5的整型数组

或者在声明时直接初始化:

int[] numbers = {1, 2, 3, 4, 5}; // 声明并初始化一个整型数组

数组一旦创建,其大小就固定不变。尝试访问数组界限之外的元素将会导致 ArrayIndexOutOfBoundsException 。数组具有以下特性:

  • 固定大小:数组一旦创建,大小不可更改。
  • 线性访问:可以通过索引直接访问元素,访问时间复杂度为O(1)。
  • 同质性:数组只能存储同一类型的元素。

3.1.2 集合框架的基本结构和使用

Java的集合框架(Collection Framework)提供了一套性能优化且经过精心设计的接口和类,用于表示和操作集合。与数组相比,集合框架具有动态增长和缩小的能力,并且可以存储不同类型的元素。集合框架中的主要接口包括 List Set Map

List 接口代表有序集合,允许重复元素:

List<String> list = new ArrayList<>(); // 使用ArrayList实现List接口
list.add("Element1");
list.add("Element2");

Set 接口代表不允许重复元素的集合:

Set<String> set = new HashSet<>(); // 使用HashSet实现Set接口
set.add("Element1");
set.add("Element2");

Map 接口用于存储键值对,其中键是唯一的:

Map<String, Integer> map = new HashMap<>(); // 使用HashMap实现Map接口
map.put("Key1", 1);
map.put("Key2", 2);

集合框架能够通过多种方式实现,比如 ArrayList LinkedList HashSet TreeSet HashMap TreeMap 等。这些实现类提供了不同的性能特性,例如 ArrayList LinkedList 在随机访问和插入操作上表现不同,而 HashMap TreeMap 在键的排序和性能上有所区别。

集合框架主要通过其迭代器模式提供遍历集合元素的能力。迭代器模式允许我们以一种一致的方式遍历集合,而无需了解集合的内部结构。

Iterator<String> iterator = list.iterator();
while(iterator.hasNext()){
    System.out.println(iterator.next());
}

3.2 队列、栈和映射的实现与应用

3.2.1 队列和栈的原理及在Java中的实现

队列和栈都是线性数据结构,它们按照特定的顺序存储和检索数据。

队列是一种先进先出(FIFO)的数据结构,通常用于任务或数据的排队处理。在Java中,队列的实现有 LinkedList PriorityQueue 等。

Queue<Integer> queue = new LinkedList<>();
queue.offer(1); // 入队
queue.offer(2);
queue.poll(); // 出队

栈是一种后进先出(LIFO)的数据结构,常用于算法实现中,如递归算法的调用栈。 Stack 类是Java提供的一个标准栈实现,也可以使用 LinkedList 来实现栈。

Stack<Integer> stack = new Stack<>();
stack.push(1); // 入栈
stack.push(2);
stack.pop(); // 出栈

| 类型 | 描述 | 典型用途 | | ---------- | ------------------------------------ | ---------------- | | Queue | 实现先进先出(FIFO)数据结构 | 缓冲处理、任务调度 | | Stack | 实现后进先出(LIFO)数据结构 | 递归算法、撤销操作 | | LinkedList | 双向链表,可用于实现栈和队列 | 内存管理、导航 | | PriorityQueue | 优先队列,元素按照优先级排序 | 事件驱动模拟、任务调度 |

3.2.2 映射的原理及在Java中的实现

映射(Map)是一种存储键值对的数据结构。与集合不同,映射存储的是键值对,其中键是唯一的,而值可以重复。映射的关键操作包括根据键查找、添加和删除键值对。

在Java中, HashMap 是最常用的映射实现,它内部基于散列表来提供键值对的存储。 TreeMap 则使用红黑树来维护键值对的排序。

Map<String, String> map = new HashMap<>();
map.put("key1", "value1"); // 添加键值对
String value = map.get("key1"); // 通过键查找值

| 类型 | 描述 | 典型用途 | | ----------- | ------------------------------------------ | ---------------------------- | | HashMap | 基于哈希表的Map接口实现 | 快速查找、大量数据存储 | | TreeMap | 基于红黑树的Map实现,能够保证元素顺序 | 需要元素排序时使用 | | LinkedHashMap| 继承自HashMap,但是维护了一个双向链表记录插入顺序 | 保持插入顺序的映射 |

在实现映射时,需要注意的是, HashMap 的性能在大多数情况下是优越的,但如果映射的键需要排序或有序处理,那么 TreeMap 可能是更好的选择。此外, LinkedHashMap 提供了一种保持插入顺序的映射实现。

4. 动态数据结构:ArrayList与LinkedList

在Java中,动态数据结构扮演着核心角色,使得程序能够在运行时根据需求动态地调整数据的存储容量。本章节将深入探讨 ArrayList LinkedList 这两种常用的数据结构,了解它们的内部工作原理和适用场景。

4.1 ArrayList的内部结构和使用方法

4.1.1 ArrayList的原理分析

ArrayList 是基于动态数组实现的,它允许我们存储任意类型的对象,并且可以在运行时动态地调整其大小。 ArrayList 内部使用数组来存储数据,当数组空间不足以存储更多元素时, ArrayList 会创建一个新的更大的数组,并将所有元素迁移到新的数组中。

// ArrayList的部分源码
public class ArrayList<E> extends AbstractList<E>
        implements List<E>, RandomAccess, Cloneable, java.io.Serializable
{
    private static final long serialVersionUID = 8683452581122892189L;

    private static final int DEFAULT_CAPACITY = 10;

    private static final Object[] EMPTY_ELEMENTDATA = {};

    private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};

    transient Object[] elementData; // non-private to simplify nested class access

    private int size;
    ...
}

从源码中可以看出, ArrayList 包含一个 elementData 数组,用于存储列表中的元素,以及一个 size 变量,用来记录当前数组中的元素个数。

4.1.2 ArrayList的动态扩容机制

ArrayList 中的元素个数超过当前容量时,它会自动扩容。默认情况下,扩容后的容量是原容量的1.5倍,这个倍数可以通过构造函数或者 ensureCapacity 方法来指定。

// ArrayList扩容的关键方法
private void grow(int minCapacity) {
    int oldCapacity = elementData.length;
    // 扩容策略,默认为1.5倍
    int newCapacity = oldCapacity + (oldCapacity >> 1);
    if (newCapacity - minCapacity < 0)
        newCapacity = minCapacity;
    if (newCapacity - MAX_ARRAY_SIZE > 0)
        newCapacity = hugeCapacity(minCapacity);
    elementData = Arrays.copyOf(elementData, newCapacity);
}

grow 方法是 ArrayList 扩容的实现方式。它首先计算新的容量大小,然后使用 Arrays.copyOf 方法将原数组复制到新数组中,完成扩容操作。

4.1.3 ArrayList的使用场景

由于 ArrayList 基于数组实现,它提供快速的随机访问能力,因此非常适合使用索引访问元素的场景。而当涉及到频繁的插入和删除操作时,可能需要考虑其他数据结构,因为每次插入或删除都可能导致大量的数组复制操作,从而影响性能。

4.2 LinkedList的原理和应用场景

4.2.1 LinkedList的链表结构分析

ArrayList 不同, LinkedList 是基于双向链表实现的。它不使用数组,而是维护了一系列的节点,每个节点包含数据和指向前一个和后一个节点的引用。这种结构使得在列表中间进行插入和删除操作更加高效,因为不需要像数组那样移动元素。

// LinkedList的部分源码
public class LinkedList<E>
    extends AbstractSequentialList<E>
    implements List<E>, Deque<E>, Cloneable, java.io.Serializable
{
    private static final long serialVersionUID = 6312403801161555461L;

    transient int size = 0;

    transient Node<E> first;

    transient Node<E> last;

    private static class Node<E> {
        E item;
        Node<E> next;
        Node<E> prev;

        Node(Node<E> prev, E element, Node<E> next) {
            this.item = element;
            this.next = next;
            this.prev = prev;
        }
    }
    ...
}

链表的每个节点通过 prev next 属性连接到其他节点。 LinkedList 类内部定义了 Node 类,用于存储数据以及前后节点的引用。

4.2.2 LinkedList与ArrayList的性能比较

LinkedList 相比 ArrayList ,在随机访问元素时,需要遍历链表直到找到该元素,因此性能较差。但在插入和删除操作上, LinkedList 通常更胜一筹,尤其是在列表的中间位置插入或删除时,因为它无需移动元素。

| 操作 | ArrayList | LinkedList | | --- | --- | --- | | 插入(末尾) | O(1) | O(1) | | 插入(中间) | O(n) | O(1) | | 删除(末尾) | O(1) | O(1) | | 删除(中间) | O(n) | O(1) | | 访问(任意位置) | O(1) | O(n) |

表格中的n表示列表的长度。从表格中可以看出,在处理大量数据且频繁进行中间插入和删除操作时, LinkedList 是一个更好的选择。

4.2.3 LinkedList的实际应用

LinkedList 在实际应用中通常用于实现栈、队列和双端队列等数据结构,尤其是当操作主要集中在列表的两端时。在Java中, LinkedList 类同时实现了 List 接口和 Deque 接口,提供了丰富的操作方法来支持这些应用场景。

通过本章节的介绍,我们可以看到 ArrayList LinkedList 各自的特点和适用场景。在选择合适的数据结构时,我们需要根据具体的应用需求和性能考量来作出明智的决策。在下一节,我们将进一步深入探讨Java中的其他高级数据结构,如树和图的实现与应用。

5. 高级数据结构:树与图

5.1 树结构的基本概念和实现

5.1.1 树和二叉树的定义及性质

在计算机科学中,树是一种重要的非线性数据结构,它模拟了一种层次结构。树由节点(或称为顶点)和连接它们的边组成。树的根节点是树的起始节点,其他节点按层次从上至下,从左至右的方式连接。每个节点都有零个或多个子节点,而叶子节点是没有任何子节点的节点。

二叉树是树的一种特殊形式,其中每个节点最多有两个子节点,通常被称作左子节点和右子节点。二叉树的特殊性质使得它在许多算法中被优先选用,例如二叉搜索树(BST)就是基于二叉树的一种高效数据结构,它支持快速的插入、删除和查找操作。

5.1.2 二叉搜索树和平衡树的实现

二叉搜索树(BST)是一种特殊的二叉树,其中每个节点都满足以下性质:

  • 节点的左子树只包含小于当前节点的数。
  • 节点的右子树只包含大于当前节点的数。
  • 左右子树也必须分别是二叉搜索树。

这种结构允许BST在对数时间内完成搜索操作。然而,BST可能在最坏的情况下退化成一个链表,比如当插入的元素是顺序的。为了避免这种情况,平衡树的概念被引入。AVL树是最早实现的平衡二叉树之一,它要求任何节点的两个子树的高度差不超过1。其他类型的平衡树包括红黑树、B树和B+树,这些数据结构被广泛应用于数据库和文件系统中。

class TreeNode {
    int value;
    TreeNode left;
    TreeNode right;

    TreeNode(int value) {
        this.value = value;
        left = null;
        right = null;
    }
}

class BinarySearchTree {
    TreeNode root;

    public void insert(int value) {
        root = insertRecursive(root, value);
    }

    private TreeNode insertRecursive(TreeNode current, int value) {
        if (current == null) {
            return new TreeNode(value);
        }
        if (value < current.value) {
            current.left = insertRecursive(current.left, value);
        } else if (value > current.value) {
            current.right = insertRecursive(current.right, value);
        }
        return current;
    }
}

在上述Java代码中,我们定义了一个二叉搜索树的基本结构和插入操作。节点类 TreeNode 包含值和两个子节点的引用,而 BinarySearchTree 类提供了插入新值的方法。

5.2 图结构及其算法应用

5.2.1 图的基本概念和存储方式

图是另一种非线性数据结构,它由一组节点(顶点)和连接这些节点的边组成。图用于表示任意的两两关系,可以是有向图,也可以是无向图。在有向图中,边表示为有序对(u, v),表示从顶点u到顶点v有一条边;在无向图中,边是无序的顶点对。

图的存储方法主要有两种:邻接矩阵和邻接表。邻接矩阵是一种二维数组的实现,矩阵中的元素表示顶点间的连接关系。邻接表则是用链表或数组存储每个顶点的邻接顶点。

5.2.2 图的遍历算法和路径搜索

图的遍历是访问图中所有顶点的算法。深度优先搜索(DFS)和广度优先搜索(BFS)是最常用的图遍历算法。

  • 深度优先搜索(DFS)从一个顶点开始,访问尽可能深的分支,直到没有可访问的分支为止,然后回溯到上一个顶点继续探索。
  • 广度优先搜索(BFS)则逐层访问顶点,从起点开始,访问所有紧邻的顶点,然后再对每一个访问过的顶点继续此过程。

路径搜索算法如迪杰斯特拉算法(Dijkstra's algorithm)和贝尔曼-福特算法(Bellman-Ford algorithm)可以用来找到图中两点之间的最短路径。迪杰斯特拉算法适用于没有负权边的图,而贝尔曼-福特算法能处理负权边,但不能处理负权循环。

import java.util.LinkedList;
import java.util.Queue;

class Graph {
    int vertices;
    LinkedList<Integer>[] adjLists;

    Graph(int vertices) {
        this.vertices = vertices;
        adjLists = new LinkedList[vertices];
        for (int i = 0; i < vertices; i++) {
            adjLists[i] = new LinkedList<>();
        }
    }

    void addEdge(int src, int dest) {
        adjLists[src].add(dest);
        // For undirected graph uncomment below line also
        // adjLists[dest].add(src);
    }

    void BFS(int startVertex) {
        boolean[] visited = new boolean[vertices];
        Queue<Integer> queue = new LinkedList<>();
        visited[startVertex] = true;
        queue.add(startVertex);

        while (!queue.isEmpty()) {
            int currentVertex = queue.poll();
            System.out.print(currentVertex + " ");

            LinkedList<Integer> list = adjLists[currentVertex];
            for (int i = 0; i < list.size(); i++) {
                int adjVertex = list.get(i);
                if (!visited[adjVertex]) {
                    visited[adjVertex] = true;
                    queue.add(adjVertex);
                }
            }
        }
    }
}

在上面的Java代码中,我们创建了一个图的类,它支持添加边和执行广度优先搜索。图是使用邻接表来存储的,我们用 LinkedList 数组表示图的邻接表。BFS方法首先访问起始顶点,然后按层次顺序访问所有顶点。

6. Java编程技能提升

6.1 设计模式在Java编程中的应用

设计模式是软件工程中的一个重要概念,它提供了经过验证的、通用的解决方案,可以帮助开发人员解决特定的软件设计问题。在Java编程中,设计模式的运用能够提升代码的可维护性、可读性和可扩展性。

6.1.1 设计模式的分类和特点

设计模式主要分为三大类:创建型模式、结构型模式和行为型模式。

  • 创建型模式 :用于描述“对象的创建逻辑”,它能够将对象的创建和使用分离。常见的创建型模式包括单例模式、工厂方法模式、抽象工厂模式、建造者模式和原型模式。
  • 结构型模式 :用于描述如何组合类和对象以获得更大的结构。常见的结构型模式包括适配器模式、桥接模式、组合模式、装饰模式、外观模式、享元模式和代理模式。
  • 行为型模式 :用于描述类或对象之间的算法关系,特别是对象之间的通信。常见的行为型模式包括责任链模式、命令模式、解释器模式、迭代器模式、中介者模式、备忘录模式、观察者模式、状态模式、策略模式、模板方法模式和访问者模式。

设计模式具有以下特点:

  • 复用性 :设计模式是被多次实践证明了的,可以在不同项目中重复使用。
  • 灵活性 :能够解决各种不同环境下的问题。
  • 可读性 :使用设计模式可以让代码更加清晰,易于理解。
  • 扩展性 :设计模式提供了扩展点,使得软件系统易于增加新的功能。

6.1.2 常见设计模式的Java实现案例

单例模式 :保证一个类只有一个实例,并提供一个全局访问点。

public class Singleton {
    private static Singleton instance = new Singleton();

    private Singleton() {}

    public static Singleton getInstance() {
        return instance;
    }
}

观察者模式 :定义对象之间的一对多依赖,当一个对象改变状态时,所有依赖于它的对象都会收到通知。

// Subject
public interface Subject {
    void registerObserver(Observer o);
    void removeObserver(Observer o);
    void notifyObservers();
}

// Observer
public interface Observer {
    void update();
}

// ConcreteSubject
public class ConcreteSubject implements Subject {
    private List<Observer> observers = new ArrayList<>();

    @Override
    public void registerObserver(Observer o) {
        observers.add(o);
    }

    @Override
    public void removeObserver(Observer o) {
        observers.remove(o);
    }

    @Override
    public void notifyObservers() {
        for (Observer observer : observers) {
            observer.update();
        }
    }
}

// ConcreteObserver
public class ConcreteObserver implements Observer {
    @Override
    public void update() {
        System.out.println("Update the observer");
    }
}

6.2 Java 8的新特性及其应用

Java 8是Java语言发展史上的一个重要版本,引入了很多革命性的新特性,极大地丰富了Java编程的表达方式。

6.2.1 Java 8的Lambda表达式和Stream API

Lambda表达式 提供了一种简洁的表示匿名内部类的方法,使代码更加简洁。Lambda表达式由参数列表、箭头和主体三部分组成。

// Lambda表达式示例:对一个列表进行排序
List<String> list = Arrays.asList("Hello", "World", "Java8");
Collections.sort(list, (s1, s2) -> s1.compareTo(s2));

Stream API 使得对集合的操作更加方便,支持函数式编程。它提供了一种高效且易于使用的处理集合的方法。

// Stream API示例:过滤和排序操作
List<String> sortedList = list.stream()
                              .filter(s -> s.startsWith("H"))
                              .sorted()
                              .collect(Collectors.toList());

6.2.2 Java 8引入的Optional类和新时间日期API

Optional类 是为了解决空指针异常而引入的一个容器类。它表示一个可能为空的值,并提供了很多有用的方法来处理值不存在的情况。

// Optional类示例:安全地获取值
Optional<String> optional = Optional.ofNullable("Java8");
optional.ifPresent(System.out::println);

新时间日期API (java.time包)是对旧的java.util.Date和Calendar API的彻底改进。新的API是不可变且线程安全的,提供了更好的日期和时间操作。

// 新时间日期API示例:日期时间的创建和格式化
LocalDateTime dateTime = LocalDateTime.now();
DateTimeFormatter formatter = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss");
String formattedDateTime = dateTime.format(formatter);

6.3 Java性能优化技巧

性能优化是提升软件运行效率和用户体验的重要环节,Java作为成熟稳定的语言,提供了许多性能优化的工具和策略。

6.3.1 垃圾回收机制和内存管理

Java的垃圾回收机制是自动管理内存的关键。它提供了多种垃圾回收器,如Serial GC、Parallel GC、CMS和G1等。了解这些垃圾回收器的特点和适用场景,可以有效提升应用性能。

// 示例:设置JVM参数使用G1垃圾回收器
-Xmx4G -Xms4G -XX:+UseG1GC

6.3.2 性能调优工具的使用和案例分析

Java提供了多种性能调优工具,如jvisualvm、jconsole和jstack等,它们可以帮助监控和分析应用的性能瓶颈。

// 使用jconsole监控Java应用
jconsole <PID>

例如,通过jvisualvm可以监控内存泄漏和线程锁争用,这对于性能调优至关重要。

在实际开发中,通过分析JVM提供的各种性能指标,结合具体业务场景,定位并优化性能问题是非常必要的。性能优化是一个持续的过程,需要不断地监控、分析和调整。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:本压缩包提供了一系列关于Java高级编程的学习资料,由讲师袁尚星精心设计。内容涵盖日期处理、字符串操作和数据结构等关键知识点。学习者将通过Java的日期和时间API(如 java.util.Date java.time 包)、字符串类方法(如 concat() , indexOf() 等)以及基本和复杂数据结构(如数组、链表、树和图)的代码示例,来深入理解并提升自己的Java编程技能。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业。 机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值