课程二:RAG 原理与应用
12节大模型系列教学课程之二:RAG 原理与应用
介绍:
深入剖析 RAG(Retrieval-Augmented Generation)技术,掌握其工作原理和实际应用场景。
课程名称:《探索 RAG 技术的奥秘》
课程简介:
详细解释 RAG 如何将检索和生成相结合,提高模型的生成质量和准确性。通过实际案例,如问答系统、文本创作等,展示 RAG 在不同任务中的出色表现。
课程详细内容
RAG 技术的基础知识
RAG 是一种将检索和生成相结合的技术,它不再仅仅依赖模型内部的知识进行生成,而是先从外部知识库或文档中检索相关信息,然后基于这些信息进行生成。与传统生成模型相比,RAG 能够引入更准确和丰富的知识,提高生成的质量。关键组成部分包括高效的检索模块,用于快速准确地找到相关信息,以及强大的生成模块,能够根据检索结果生成自然流畅的文本。
图片:展示一个简单的 RAG 技术框架,标注出检索模块和生成模块。
RAG 的工作原理
在检索过程中,模型会根据输入的提示或问题,利用各种检索算法和策略,从大规模的文本库中筛选出最相关的部分。例如,可以基于关键词匹配、语义相似度等进行检索。生成过程中,模型会将检索到的信息融入到生成的文本中,通过巧妙的融合方式,使得生成的内容既有基于模型学习的创造性,又有来自外部知识的准确性。
图片:用动画展示检索和生成的交互过程,突出信息的流动和转化。
RAG 提高生成质量和准确性的原理
融合外部知识使得生成的内容更具事实依据,避免了凭空想象导致的错误或不准确。同时,减少了生成的随机性和偏差,使生成更加有针对性和合理性。通过具体的实例,比如在某个特定领域的问题回答中,对比使用 RAG 和传统模型的生成结果,清晰展示质量和准确性的提升。
图片:并排展示两个生成结果,一个使用 RAG,一个不使用,标注出质量和准确性的差异。
RAG 在问答系统中的应用
在问答系统中,RAG 首先根据问题在知识库中检索相关的知识片段,然后基于这些片段生成准确且详细的回答。通过实际的问答系统案例,分析其工作流程,展示如何有效地应对各种类型的问题,并给出令人满意的回答。
图片:展示问答系统的界面,以及具体问题和生成回答的示例。
RAG 在文本创作中的应用
在文本创作中,RAG 可以为作者提供灵感、素材和参考,辅助创作出更丰富、有深度的内容。无论是故事创作中的情节构思,还是论文写作中的论据支持,RAG 都能发挥重要作用。通过实际的创作案例,展示其在不同场景下的出色表现。
图片:展示一段由 RAG 辅助生成的故事或论文段落。
RAG 在其他领域的应用探索
除了问答和文本创作,RAG 还在代码生成中可以根据需求检索相关的代码片段和模式,生成准确的代码;在摘要生成中能够提取关键信息并生成简洁明了的摘要。探讨其在这些领域的应用潜力和创新方向。
图片:展示代码生成和摘要生成的示例结果。
RAG 技术的挑战与应对策略
检索可能存在准确性和相关性不足的问题,导致生成的基础信息不准确;生成可能出现连贯性和一致性不佳的情况,影响文本的质量。针对这些挑战&#x