文章目录
轨道六根数
概述
在二体问题中,轨道根数(orbital elements)是描述物体运动轨迹的简便形式。三维空间中,唯一确定物体轨迹需要六个参数,如位置矢量和速度矢量 (均为三维) 可共同确定物体轨迹。此外,用六个轨道根数也可描述它。通常的轨道六根数指的是:半长轴 a a a 、离心率 e e e 、轨道倾角 i i i 、近心点辐角 ω \omega ω 、升交点经度 Ω \Omega Ω 和真近点角 φ \varphi φ 。经过三角函数运算,它们能表示出物体所处特定位置和速度。
轨道六根数如图所示。
而在圆轨道中,描述轨道仅需四个参数,一般将真近点角 φ \varphi φ 与近心点辐角 ω \omega ω 合并为纬度辐角 u u u ,同时离心率 e e e 为 0 ,矢量不再有意义。故只需要四个。
轨道六根数和位置速度矢量的相互转换见附录。
其他表示
在一般轨道中,除了上述的六个轨道根数的组合,轨道六根数还有其他组合方式。例如,真近点角 φ \varphi φ可换为平近点角 M M M或平经度 L L L;升交点经度 Ω \Omega Ω或近心点辐角 ω \omega ω可换为近心点经度 ω ~ {\tilde \omega } ω~等。
(1)半长轴
在二体问题中,半长轴(semi major axis)是描述圆锥轨道尺度的参数,常用记号为 a a a。
椭圆
椭圆轨道的半长轴是过焦点与椭圆相交的最长线段的长度的一半。即下图中原点到椭圆与x轴正半轴交点的距离。
抛物线
抛物线轨道常用的是半通径,即抛物线焦点到准线距离的一半(下图中的p)。它没有半长轴概念。
双曲线
双曲线轨道的半长轴是轨道与焦线交点的间距的一半。即下图中原点到双曲线与x轴正半轴交点的距离。
与速度位置的转化
若已知物体的速度大小v和离中心天体的距离r,半长轴可依下式求出:
椭圆
a = ( 2 r − v 2 μ ) − 1 a=\left(\frac{2}{r}-\frac{v^{2}}{\mu}\right)^{-1} a=(r2−μv2)−1
双曲线
a = ( − 2 r + v 2 μ ) − 1 a=\left(-\frac{2}{r}+\frac{v^{2}}{\mu}\right)^{-1} a=(−r2+μv2)−1
(2)离心率
在二体问题中,离心率(eccentricity)用来衡量轨道的扁曲程度,常用记号为 e e e。其标量形式是轨道六根数之一。它可以是标量,也可以是矢量。
离心率标量
椭圆
椭圆轨道的离心率被定义为半焦距与半长轴之比,半焦距为焦点到原点的距离。
椭圆的离心率大于0且小于1
椭圆轨道离心率越小,则轨道越接近于圆,扁曲程度越小。圆轨道是椭圆轨道的特殊形式,其离心率为0。
抛物线
抛物线轨道的离心率被定义为1。
双曲线
双曲线轨道的离心率被定义为半焦距与半长轴之比,半焦距为焦点到原点的距离。
双曲线的离心率大于1
双曲线轨道离心率越大,则轨道越贴近y轴,扁曲程度越小。
离心率矢量
离心率矢量的大小等于离心率标量,其方向由中心天体指向近心点。在此定义下,离心率矢量可由位置矢量
r
^
\hat{r}
r^ 、速度欠量
v
^
\hat{v}
v^ 表示:
e
^
=
1
μ
[
(
v
2
−
μ
r
)
r
^
−
(
r
^
⋅
v
^
)
v
^
]
\hat{e}=\frac{1}{\mu}\left[\left(v^{2}-\frac{\mu}{r}\right) \hat{r}-(\hat{r} \cdot \hat{v}) \hat{v}\right]
e^=μ1[(v2−rμ)r^−(r^⋅v^)v^]
其中
μ
\mu
μ 为中心天体引力常数。
具体推导过程见附录。
(3)轨道倾角
在二体问题中,轨道倾角(inclination)是描述轨道平面相对于参考平面倾斜程度的参数,常用记号为 i i i。
在定义轨道倾角前,先要定义参考坐标系。该坐标系需为惯性系,具有x,y,z三正交轴,且符合右手定则。例如,在中心天体为地球时的航天器运动中,常用地心惯性坐标系(也称赤道惯性坐标系)。其坐标原点在地球中心; x轴沿地球赤道与黄道面的交线,指向春分点; z轴指向北极; y轴在赤道平面内垂直于x轴,方向由右手定则确定。
轨道倾角是物体轨道面正法向与参考坐标系z轴夹角。正法向是指按右手螺旋定则垂直于轨道平面的方向。具体示意如下。
轨道倾角的取值范围是 [ 0 , 18 0 ∘ ] \left[0,180^{\circ}\right] [0,180∘] 。
计算
轨道倾角需依据定义计算,即有:
cos
i
=
z
^
⋅
h
^
h
\cos i=\frac{\hat{z} \cdot \hat{h}}{h}
cosi=hz^⋅h^
其中
h
^
\hat{h}
h^ 为角动量,其方向始终沿轨道平面正法向。
(4)近心点辐角
在二体问题中,近心点辐角(argument of periapsis)用来衡量近心点与参考平面的位置关系,常用记号为 ω \omega ω。它是轨道六根数之一。
近心点辐角是指离心率矢量与升交线的交角。其取值范围是 [ 0 , 36 0 ∘ ] \left[0,360^{\circ}\right] [0,360∘] 。
计算
近心点辐角可由其定义计算。设离心率矢量为 e ^ \hat e e^,升交线矢量为 n ^ \hat n n^,则:
cos ω = n ^ ⋅ e ^ n e \cos \omega = \frac{\hat n \cdot \hat e}{ne} cosω=nen^⋅e^
如果 z ^ ⋅ e ^ > 0 \hat z \cdot \hat e > 0 z^⋅e^>0,即离心率矢量与z轴正半轴夹角为锐角,那么 ω < 18 0 ∘ \omega < {180^ \circ } ω<180∘。
升交线
在二体问题中,升交线(Ascending node)是指轨道平面和参考坐标系中的xy平面的交线。且要求物体在经过该交点(升交点)后,z坐标由负变正。
(5)升交点经度
在二体问题中,升交点经度(longitude of ascending node)用来衡量轨道平面相对于x轴的位置,常用记号为 Ω \Omega Ω。它是轨道六根数之一。
升交点经度是指参考坐标系x轴与升交线的交角。其取值范围是 [ 0 , 36 0 ∘ ] \left[0,360^{\circ}\right] [0,360∘] 。
计算
升交点经度可由其定义计算。设升交线矢量为
n
^
\hat{n}
n^ ,则:
cos
Ω
=
n
^
⋅
x
^
n
\cos \Omega=\frac{\hat{n} \cdot \hat{x}}{n}
cosΩ=nn^⋅x^
若
y
^
⋅
n
^
>
0
\hat{y} \cdot \hat{n}>0
y^⋅n^>0 ,即升交线与
y
\mathrm{y}
y 轴交角为锐角,则
Ω
<
18
0
∘
\Omega<180^{\circ}
Ω<180∘ 。
(6)真近点角
在二体问题中,真近点角(true anomaly)用来衡量物体在轨道焦线的相对位置,常用记号为 φ \varphi φ(某些参考书中也记作 θ \theta θ)。它是轨道六根数之一。
真近点角是指由离心率矢量到物体位置矢量的角度。其取值范围是 [ 0 , 36 0 ∘ ] \left[0,360^{\circ}\right] [0,360∘] 。
计算
真近点角可由其定义计算。设离心率矢量为
e
^
\hat{e}
e^ ,位置矢量为
r
^
\hat{r}
r^ ,则:
cos
φ
=
e
^
⋅
r
^
e
r
\cos \varphi=\frac{\hat{e} \cdot \hat{r}}{e r}
cosφ=ere^⋅r^
如果
r
^
⋅
v
^
>
0
\hat{r} \cdot \hat{v}>0
r^⋅v^>0 ,即位置矢量与速度矢量之间夹角为锐角,则
φ
<
18
0
∘
\varphi<180^{\circ}
φ<180∘ 。
在物体运动过程中,真近点角是轨道六根数中的唯一变量。例如,物体距中心天体的距离是真近点角的函数。对于椭圆轨道:
r
=
a
(
1
−
e
2
)
1
+
e
cos
φ
r=\frac{a\left(1-e^{2}\right)}{1+e \cos \varphi}
r=1+ecosφa(1−e2)
其中
a
a
a 是半长轴,
e
e
e 是离心率。
对于双曲线轨道:
r
=
a
(
−
1
+
e
2
)
1
+
e
cos
φ
r=\frac{a\left(-1+e^{2}\right)}{1+e \cos \varphi}
r=1+ecosφa(−1+e2)
注意到开普勒三定律中的第二定律:
h
^
=
r
^
×
v
^
=
r
2
d
φ
d
t
i
^
z
=
const
\hat{h}=\hat{r} \times \hat{v}=r^{2} \frac{d \varphi}{d t} \hat{i}_{z}=\text { const }
h^=r^×v^=r2dtdφi^z= const
其中
h
^
\hat{h}
h^ 为角动量。可知:
d
φ
d
t
=
h
r
2
\frac{d \varphi}{d t}=\frac{h}{r^{2}}
dtdφ=r2h
同时由半通径与角动量的关系:
p
=
h
2
μ
=
{
a
(
1
−
e
2
)
,
ellipse
a
(
−
1
+
e
2
)
,
hyperbola
p=\frac{h^{2}}{\mu}=\left\{\begin{array}{c} a\left(1-e^{2}\right), \text { ellipse } \\ a\left(-1+e^{2}\right), \text { hyperbola } \end{array}\right.
p=μh2={a(1−e2), ellipse a(−1+e2), hyperbola
轨道角速度
最终可以验证,物体的轨道角速度(真近点角的变化率)也是真近点角的函数:
d
φ
d
t
=
μ
p
3
2
(
1
+
e
cos
φ
)
2
\frac{d \varphi}{d t}=\frac{\sqrt{\mu}}{p^{\frac{3}{2}}}(1+e \cos \varphi)^{2}
dtdφ=p23μ(1+ecosφ)2
其中
μ
\mu
μ 是中心天体引力常数。
附录
轨道六根数转位置速度矢量
轨道坐标系经过三次方向余弦矩阵变换即可变为中心天体惯性系。第一次变换时,轨道平面绕参考坐标系z轴转过 − Ω -\Omega −Ω,升交线与参考坐标系x轴重合;第二次变换时,轨道平面绕参考坐标系x轴转过 − i -i −i,轨道平面正法向与参考坐标系z轴重合;第三次变换时,轨道平面绕参考坐标系z轴转过 − ω -\omega −ω,离心率矢量与参考坐标系x轴重合;另外,在参考坐标系下,物体坐标为 [ r cos φ , r sin φ , 0 ] ′ {\left[ {r\cos \varphi ,r\sin \varphi ,0} \right]^\prime } [rcosφ,rsinφ,0]′。整个过程为欧拉角序列3-1-3。
同时,注意到位置矢量的大小仅是半通径
p
p
p和真近点角的函数,而半通径可由半长轴和离心率求出,或直接给出:
r
=
p
1
+
e
cos
φ
r = \frac{p}{1 + e\cos \varphi }
r=1+ecosφp
最终有:
r
^
=
R
3
(
−
Ω
)
R
1
(
−
i
)
R
3
(
−
ω
)
[
r
cos
φ
r
sin
φ
0
]
\hat r = {R_3}( - \Omega ){R_1}( - i){R_3}( - \omega )\left[{\begin{matrix} {r\cos \varphi }\\ {r\sin \varphi }\\ 0 \end{matrix}} \right]
r^=R3(−Ω)R1(−i)R3(−ω)⎣⎡rcosφrsinφ0⎦⎤
r ^ = p 1 + e cos φ [ cos Ω cos ( ω + φ ) − sin Ω sin ( ω + φ ) cos i sin Ω cos ( ω + φ ) + cos Ω sin ( ω + φ ) cos i sin ( ω + φ ) sin i ] \hat r = \frac{p}{1 + e\cos \varphi }\left[ {\begin{matrix} {\cos \Omega \cos (\omega + \varphi ) - \sin \Omega \sin (\omega + \varphi )\cos i}\\ {\sin \Omega \cos (\omega + \varphi ) + \cos \Omega \sin (\omega + \varphi )\cos i}\\ {\sin (\omega + \varphi )\sin i} \end{matrix}} \right] r^=1+ecosφp⎣⎡cosΩcos(ω+φ)−sinΩsin(ω+φ)cosisinΩcos(ω+φ)+cosΩsin(ω+φ)cosisin(ω+φ)sini⎦⎤
由于运动中除了 φ \varphi φ,其余轨道根数均不变,且轨道六根数可唯一确定位置矢量,因此位置矢量是 φ \varphi φ的函数。从而有:
v ^ = d r ^ d φ d φ d t \hat v = \frac{d\hat r}{d\varphi }\frac{d\varphi }{dt} v^=dφdr^dtdφ
同时注意到真近点角的微分为:
d
φ
d
t
=
μ
p
3
/
2
(
1
+
e
cos
φ
)
2
\frac{d\varphi }{dt} = \frac{\sqrt \mu }{p^{3/2}}{(1 + e\cos \varphi )^2}
dtdφ=p3/2μ(1+ecosφ)2
其中
μ
\mu
μ是[[中心天体引力常数]]。
最后,有:
v
^
=
μ
p
[
−
cos
Ω
(
sin
(
ω
+
φ
)
+
e
sin
ω
)
−
sin
Ω
(
cos
(
ω
+
φ
)
+
e
cos
ω
)
cos
i
−
sin
Ω
(
sin
(
ω
+
φ
)
+
e
sin
ω
)
+
cos
Ω
(
cos
(
ω
+
φ
)
+
e
cos
ω
)
cos
i
(
cos
(
ω
+
φ
)
+
e
cos
ω
)
sin
i
]
\hat v = \sqrt {\frac{\mu }{p}} \left[ {\begin{matrix} { - \cos \Omega (\sin (\omega + \varphi ) + e\sin \omega ) - \sin \Omega (\cos (\omega + \varphi ) + e\cos \omega )\cos i}\\ { - \sin \Omega (\sin (\omega + \varphi ) + e\sin \omega ) + \cos \Omega (\cos (\omega + \varphi ) + e\cos \omega )\cos i}\\ {(\cos (\omega + \varphi ) + e\cos \omega )\sin i} \end{matrix}} \right]
v^=pμ⎣⎡−cosΩ(sin(ω+φ)+esinω)−sinΩ(cos(ω+φ)+ecosω)cosi−sinΩ(sin(ω+φ)+esinω)+cosΩ(cos(ω+φ)+ecosω)cosi(cos(ω+φ)+ecosω)sini⎦⎤
注:经评论指出, R 3 ( − Ω ) R 1 ( − i ) R 3 ( − ω ) {R_3}( - \Omega ){R_1}( - i){R_3}( - \omega ) R3(−Ω)R1(−i)R3(−ω),应该为 R 3 ( − ω ) R 1 ( − i ) R 3 ( − Ω ) {R_3}( - \omega ){R_1}( - i){R_3}( - \Omega ) R3(−ω)R1(−i)R3(−Ω),但是这样后面的形式也要改,笔者一时找不到其他资料给出与期望一致的形式,所以这里目前存疑,大家使用时需要注意。
位置速度矢量转轨道六根数
位置速度矢量转轨道六根数的过程是依照轨道六根数的定义进行的。
首先求半通径
a
a
a。若物体的速度大小为
v
v
v,离中心天体的距离为
r
r
r,则:
a
=
(
2
r
−
v
2
μ
)
−
1
a = {\left( {\frac{2}{r} - \frac{v^2}{\mu }} \right)^{ - 1}}
a=(r2−μv2)−1
a
a
a应为有限正数。若求出
a
a
a为无穷,则表明轨道为抛物线,可忽略此步;若求出
a
a
a为负,则表明轨道为双曲线,需改变
a
a
a的符号。
进一步求离心率矢量
e
^
\hat e
e^:
e
^
=
1
μ
[
(
v
2
−
μ
r
)
r
^
−
(
r
^
⋅
v
^
)
v
^
]
\hat e = \frac{1}{\mu }\left[ {\left( {v^2} - \frac{\mu }{r} \right)\hat r - \left( {\hat r \cdot \hat v} \right)\hat v} \right]
e^=μ1[(v2−rμ)r^−(r^⋅v^)v^]
轨道六根数中的离心率为离心率标量,即
e
^
\hat e
e^的模。若
e
e
e为零向量,则说明轨道为圆。
再计算角动量
h
^
\hat h
h^:
h
^
=
r
^
×
v
^
\hat h = \hat r \times \hat v
h^=r^×v^
若已经认定轨道为抛物线,则依据:
p
=
h
2
μ
p = \frac{h^2}{\mu }
p=μh2
求出抛物线的轨道根数之一,即半通径。
已知角动量和z轴单位矢量
z
^
\hat z
z^,轨道倾角
i
i
i即可求:
cos
i
=
z
^
⋅
h
^
h
\cos i = \frac{\hat z \cdot \hat h}{h}
cosi=hz^⋅h^
再计算升交线矢量
n
^
{\hat n}
n^:
n
^
=
z
^
×
h
^
\hat n = \hat z \times \hat h
n^=z^×h^
近心点辐角
ω
\omega
ω可由此计算:
cos
ω
=
n
^
⋅
e
^
n
e
\cos \omega = \frac{\hat n \cdot \hat e}{ne}
cosω=nen^⋅e^
如果
z
^
⋅
e
^
>
0
\hat z \cdot \hat e > 0
z^⋅e^>0,即离心率矢量与z轴正半轴夹角为锐角,那么
ω
<
18
0
∘
\omega < {180^ \circ }
ω<180∘。
升交点经度
Ω
\Omega
Ω也可算出:
cos
Ω
=
n
^
⋅
x
^
n
\cos \Omega = \frac{\hat n \cdot \hat x}{n}
cosΩ=nn^⋅x^
若
y
^
⋅
n
^
>
0
\hat y \cdot \hat n > 0
y^⋅n^>0,即升交线与y轴交角为锐角,则
Ω
<
18
0
∘
\Omega < {180^ \circ }
Ω<180∘。
最后是真近点角
φ
\varphi
φ:
cos
φ
=
e
^
⋅
r
^
e
r
\cos \varphi = \frac{\hat e \cdot \hat r}{er}
cosφ=ere^⋅r^
如果
r
^
⋅
v
^
>
0
\hat r \cdot \hat v > 0
r^⋅v^>0,即位置矢量与速度矢量之间夹角为锐角,则
φ
<
18
0
∘
\varphi < {180^ \circ }
φ<180∘。
由此,椭圆、抛物线或双曲线的轨道根数全部求出。
若轨道在离心率计算时已被认定为圆,则不必计算真近点角
φ
\varphi
φ与近心点辐角
ω
\omega
ω,而依照下式计算纬度辐角
u
u
u:
cos
u
=
n
^
⋅
r
^
n
r
\cos u = \frac{\hat n \cdot \hat r}{nr}
cosu=nrn^⋅r^
如果
r
^
⋅
z
^
>
0
\hat r \cdot \hat z > 0
r^⋅z^>0,即物体在xy平面上方,则
u
<
18
0
∘
u < {180^ \circ }
u<180∘。
离心率矢量的表示推导
无外力作用时,两体系统相对运动基本动力学方程如下:
d 2 d t 2 r ^ + μ r 3 r ^ = 0 ^ \displaystyle\frac{{{d^2}}}{{d{t^2}}}\hat r + \frac{\mu }{{{r^3}}}\hat r = \hat 0 dt2d2r^+r3μr^=0^
利用 h ^ = r ^ × v ^ \hat h = \hat r \times \hat v h^=r^×v^对上式进行右乘,得
d 2 d t 2 r ^ × h ^ + μ r 3 r ^ × ( r ^ × v ^ ) = 0 ^ \displaystyle\frac{{{d^2}}}{{d{t^2}}}\hat r \times \hat h + \frac{\mu }{{{r^3}}}\hat r \times (\hat r \times \hat v) = \hat 0 dt2d2r^×h^+r3μr^×(r^×v^)=0^
利用并矢,引入矢量叉乘计算公式
a ^ × ( b ^ × c ^ ) = ( a ^ ⋅ c ^ ) b ^ − ( a ^ ⋅ b ^ ) c ^ \displaystyle\hat a \times (\hat b \times \hat c) = (\hat a \cdot \hat c)\hat b - (\hat a \cdot \hat b)\hat c a^×(b^×c^)=(a^⋅c^)b^−(a^⋅b^)c^
上式第二项矢量可化为
r ^ × ( r ^ × v ^ ) = ( r ^ ⋅ d r ^ d t ) r ^ − ( r ^ ⋅ r ^ ) d r ^ d t = 1 2 r ^ d ( r ^ ⋅ r ^ ) d t − r 2 d r ^ d t = r ^ r d r d t − r 2 d r ^ d t = − r 3 d d t ( r ^ r ) \displaystyle\hat r \times (\hat r \times \hat v) = (\hat r \cdot \frac{ {d\hat r}}{ {dt}})\hat r - (\hat r \cdot \hat r)\frac{ {d\hat r}}{ {dt}} = \frac{1}{2}\hat r\frac{ {d(\hat r \cdot \hat r)}}{ {dt}} - {r^2}\frac{ {d\hat r}}{ {dt}} = \hat rr\frac{ {dr}}{ {dt}} - {r^2}\frac{ {d\hat r}}{ {dt}} = - {r^3}\frac{d}{ {dt}}(\frac{ {\hat r}}{r}) r^×(r^×v^)=(r^⋅dtdr^)r^−(r^⋅r^)dtdr^=21r^dtd(r^⋅r^)−r2dtdr^=r^rdtdr−r2dtdr^=−r3dtd(rr^)
代回原式得
d 2 r ^ d t 2 × h ^ − μ d d t ( r ^ r ) = 0 ^ \displaystyle\frac{{{d^2}\hat r}}{{d{t^2}}} \times \hat h - \mu \frac{d}{ {dt}}(\frac{ {\hat r}}{r}) = \hat 0 dt2d2r^×h^−μdtd(rr^)=0^
考虑到 h ^ {\hat h} h^=const,对上式积分得
d r ^ d t × h ^ − μ r ^ r = c ^ \displaystyle\frac{ {d\hat r}}{ {dt}} \times \hat h - \mu \frac{ {\hat r}}{r} = \hat c dtdr^×h^−μrr^=c^
式中, c ^ {\hat c} c^为积分常矢量,引入偏心率矢量 e ^ {\hat e} e^,令 e ^ = c ^ μ \hat e = \frac{ {\hat c}}{\mu } e^=μc^上式改写为
1 μ d r ^ d t × h ^ − r ^ r = e ^ \displaystyle\frac{1}{\mu }\frac{ {d\hat r}}{ {dt}} \times \hat h - \frac{ {\hat r}}{r} = \hat e μ1dtdr^×h^−rr^=e^
将离心率矢量 e ^ {\hat e} e^写在方程的左侧,有
e ^ = 1 μ ( v ^ × h ^ ) − r ^ r \displaystyle\hat e = \frac{1}{\mu }(\hat v \times \hat h) - \frac{ {\hat r}}{r} e^=μ1(v^×h^)−rr^
再次利用 h ^ = r ^ × v ^ \hat h = \hat r \times \hat v h^=r^×v^可得
e ^ = 1 μ [ v ^ × ( r ^ × v ^ ) ] − r ^ r \displaystyle\hat e = \frac{1}{\mu }[\hat v \times (\hat r \times \hat v)] - \frac{ {\hat r}}{r} e^=μ1[v^×(r^×v^)]−rr^
式中第一项方括号内利用并矢形式展开,最终化简可得
e ^ = 1 μ [ ( v ^ ⋅ v ^ ) r ^ − ( v ^ ⋅ r ^ ) v ^ ] − r ^ r = 1 μ [ v 2 r ^ − ( r ^ ⋅ v ^ ) v ^ ] − r ^ r = 1 μ [ ( v 2 − μ r ) r ^ − ( r ^ ⋅ v ^ ) v ^ ] \displaystyle\hat e = \frac{1}{\mu }[(\hat v \cdot \hat v)\hat r - (\hat v \cdot \hat r)\hat v] - \frac{ {\hat r}}{r} = \frac{1}{\mu }[{v^2}\hat r - (\hat r \cdot \hat v)\hat v] - \frac{ {\hat r}}{r} = \frac{1}{\mu }[({v^2} - \frac{\mu }{r})\hat r - (\hat r \cdot \hat v)\hat v] e^=μ1[(v^⋅v^)r^−(v^⋅r^)v^]−rr^=μ1[v2r^−(r^⋅v^)v^]−rr^=μ1[(v2−rμ)r^−(r^⋅v^)v^]
推导完毕。
其他示意图
图片来自卫星轨道六根数[宝典] - 豆丁网 https://www.docin.com/mobile/detail.do?id=1439165937
在这个图中,轨道平面(orbital plane)(黄色)与参考平面(灰色)相交。对于地球轨道卫星来说,参考平面通常是地球的赤道面,而对于太阳轨道上的卫星来说,它是黄道面。交点称为升交线(line of nodes),因为它将质量中心与上升和下降的节点连接起来。参考平面与春分点(vernal point)(♈︎)一起建立参考框架。
图片来自Orbital elements - Wikipedia https://en.jinzhao.wiki/wiki/Orbital_elements
参考文献:
轨道六根数 - 卫星百科 - 灰机wiki https://sat.huijiwiki.com/wiki/轨道六根数
ps:2022.1.26更新,把第二个示意图移到文末,添加了维基百科上的图。发现已经有3个收藏了,很开心。
ps:2022.4.26更新,发现一个笔误,“近心点辐角”的计算公式复制成了轨道倾角的,真是惭愧可别误导他人了,如果有发现别的错误欢迎评论指出。把“轨道六根数转位置速度矢量,位置速度矢量转轨道六根数,离心率矢量的表示推导”放在末尾的附录了,因为篇幅较长,且内容依赖前文或相对独立。
ps:2022.6.4更新,读者秋水浮萍任鱼跃在评论指出了一个问题,近期查阅一些资料没找到确切结果,就先标记为存疑了。