轨道六根数的含义汇总

轨道六根数

概述

在二体问题中,轨道根数(orbital elements)是描述物体运动轨迹的简便形式。三维空间中,唯一确定物体轨迹需要六个参数,如位置矢量和速度矢量 (均为三维) 可共同确定物体轨迹。此外,用六个轨道根数也可描述它。通常的轨道六根数指的是:半长轴 a a a 、离心率 e e e 、轨道倾角 i i i 、近心点辐角 ω \omega ω 、升交点经度 Ω \Omega Ω 和真近点角 φ \varphi φ 。经过三角函数运算,它们能表示出物体所处特定位置和速度。

轨道六根数如图所示。

示意图1

而在圆轨道中,描述轨道仅需四个参数,一般将真近点角 φ \varphi φ 与近心点辐角 ω \omega ω 合并为纬度辐角 u u u ,同时离心率 e e e 为 0 ,矢量不再有意义。故只需要四个。

轨道六根数和位置速度矢量的相互转换见附录。

其他表示

在一般轨道中,除了上述的六个轨道根数的组合,轨道六根数还有其他组合方式。例如,真近点角 φ \varphi φ可换为平近点角 M M M或平经度 L L L;升交点经度 Ω \Omega Ω或近心点辐角 ω \omega ω可换为近心点经度 ω ~ {\tilde \omega } ω~等。

(1)半长轴

在二体问题中,半长轴(semi major axis)是描述圆锥轨道尺度的参数,常用记号为 a a a

椭圆

椭圆轨道的半长轴是过焦点与椭圆相交的最长线段的长度的一半。即下图中原点到椭圆与x轴正半轴交点的距离。

原点至a即为半长轴

抛物线

抛物线轨道常用的是半通径,即抛物线焦点到准线距离的一半(下图中的p)。它没有半长轴概念。

半通径p

双曲线

双曲线轨道的半长轴是轨道与焦线交点的间距的一半。即下图中原点到双曲线与x轴正半轴交点的距离。

原点至a即为半长轴

与速度位置的转化

若已知物体的速度大小v和离中心天体的距离r,半长轴可依下式求出:

椭圆

a = ( 2 r − v 2 μ ) − 1 a=\left(\frac{2}{r}-\frac{v^{2}}{\mu}\right)^{-1} a=(r2μv2)1

双曲线

a = ( − 2 r + v 2 μ ) − 1 a=\left(-\frac{2}{r}+\frac{v^{2}}{\mu}\right)^{-1} a=(r2+μv2)1

(2)离心率

在二体问题中,离心率(eccentricity)用来衡量轨道的扁曲程度,常用记号为 e e e。其标量形式是轨道六根数之一。它可以是标量,也可以是矢量。

离心率标量

椭圆

椭圆轨道的离心率被定义为半焦距与半长轴之比,半焦距为焦点到原点的距离。

椭圆的离心率大于0且小于1

椭圆轨道离心率越小,则轨道越接近于圆,扁曲程度越小。圆轨道是椭圆轨道的特殊形式,其离心率为0。

抛物线

抛物线轨道的离心率被定义为1。

双曲线

双曲线轨道的离心率被定义为半焦距与半长轴之比,半焦距为焦点到原点的距离。

双曲线的离心率大于1

双曲线轨道离心率越大,则轨道越贴近y轴,扁曲程度越小。

离心率矢量

离心率矢量的大小等于离心率标量,其方向由中心天体指向近心点。在此定义下,离心率矢量可由位置矢量 r ^ \hat{r} r^ 、速度欠量 v ^ \hat{v} v^ 表示:
e ^ = 1 μ [ ( v 2 − μ r ) r ^ − ( r ^ ⋅ v ^ ) v ^ ] \hat{e}=\frac{1}{\mu}\left[\left(v^{2}-\frac{\mu}{r}\right) \hat{r}-(\hat{r} \cdot \hat{v}) \hat{v}\right] e^=μ1[(v2rμ)r^(r^v^)v^]
其中 μ \mu μ 为中心天体引力常数。

具体推导过程见附录。

(3)轨道倾角

在二体问题中,轨道倾角(inclination)是描述轨道平面相对于参考平面倾斜程度的参数,常用记号为 i i i

在定义轨道倾角前,先要定义参考坐标系。该坐标系需为惯性系,具有x,y,z三正交轴,且符合右手定则。例如,在中心天体为地球时的航天器运动中,常用地心惯性坐标系(也称赤道惯性坐标系)。其坐标原点在地球中心; x轴沿地球赤道与黄道面的交线,指向春分点; z轴指向北极; y轴在赤道平面内垂直于x轴,方向由右手定则确定。

轨道倾角是物体轨道面正法向与参考坐标系z轴夹角。正法向是指按右手螺旋定则垂直于轨道平面的方向。具体示意如下。

轨道倾角的取值范围是 [ 0 , 18 0 ∘ ] \left[0,180^{\circ}\right] [0,180]

计算

轨道倾角需依据定义计算,即有:
cos ⁡ i = z ^ ⋅ h ^ h \cos i=\frac{\hat{z} \cdot \hat{h}}{h} cosi=hz^h^
其中 h ^ \hat{h} h^ 为角动量,其方向始终沿轨道平面正法向。

(4)近心点辐角

在二体问题中,近心点辐角(argument of periapsis)用来衡量近心点与参考平面的位置关系,常用记号为 ω \omega ω。它是轨道六根数之一。

近心点辐角是指离心率矢量与升交线的交角。其取值范围是 [ 0 , 36 0 ∘ ] \left[0,360^{\circ}\right] [0,360]

计算

近心点辐角可由其定义计算。设离心率矢量为 e ^ \hat e e^,升交线矢量为 n ^ \hat n n^,则:

cos ⁡ ω = n ^ ⋅ e ^ n e \cos \omega = \frac{\hat n \cdot \hat e}{ne} cosω=nen^e^

如果 z ^ ⋅ e ^ > 0 \hat z \cdot \hat e > 0 z^e^>0,即离心率矢量与z轴正半轴夹角为锐角,那么 ω < 18 0 ∘ \omega < {180^ \circ } ω<180

升交线

在二体问题中,升交线(Ascending node)是指轨道平面和参考坐标系中的xy平面的交线。且要求物体在经过该交点(升交点)后,z坐标由负变正。

(5)升交点经度

在二体问题中,升交点经度(longitude of ascending node)用来衡量轨道平面相对于x轴的位置,常用记号为 Ω \Omega Ω。它是轨道六根数之一。

升交点经度是指参考坐标系x轴与升交线的交角。其取值范围是 [ 0 , 36 0 ∘ ] \left[0,360^{\circ}\right] [0,360]

计算

升交点经度可由其定义计算。设升交线矢量为 n ^ \hat{n} n^ ,则:
cos ⁡ Ω = n ^ ⋅ x ^ n \cos \Omega=\frac{\hat{n} \cdot \hat{x}}{n} cosΩ=nn^x^
y ^ ⋅ n ^ > 0 \hat{y} \cdot \hat{n}>0 y^n^>0 ,即升交线与 y \mathrm{y} y 轴交角为锐角,则 Ω < 18 0 ∘ \Omega<180^{\circ} Ω<180

(6)真近点角

在二体问题中,真近点角(true anomaly)用来衡量物体在轨道焦线的相对位置,常用记号为 φ \varphi φ(某些参考书中也记作 θ \theta θ)。它是轨道六根数之一。

真近点角是指由离心率矢量到物体位置矢量的角度。其取值范围是 [ 0 , 36 0 ∘ ] \left[0,360^{\circ}\right] [0,360]

计算

真近点角可由其定义计算。设离心率矢量为 e ^ \hat{e} e^ ,位置矢量为 r ^ \hat{r} r^ ,则:
cos ⁡ φ = e ^ ⋅ r ^ e r \cos \varphi=\frac{\hat{e} \cdot \hat{r}}{e r} cosφ=ere^r^
如果 r ^ ⋅ v ^ > 0 \hat{r} \cdot \hat{v}>0 r^v^>0 ,即位置矢量与速度矢量之间夹角为锐角,则 φ < 18 0 ∘ \varphi<180^{\circ} φ<180
在物体运动过程中,真近点角是轨道六根数中的唯一变量。例如,物体距中心天体的距离是真近点角的函数。对于椭圆轨道:
r = a ( 1 − e 2 ) 1 + e cos ⁡ φ r=\frac{a\left(1-e^{2}\right)}{1+e \cos \varphi} r=1+ecosφa(1e2)
其中 a a a 是半长轴, e e e 是离心率。
对于双曲线轨道:
r = a ( − 1 + e 2 ) 1 + e cos ⁡ φ r=\frac{a\left(-1+e^{2}\right)}{1+e \cos \varphi} r=1+ecosφa(1+e2)
注意到开普勒三定律中的第二定律:
h ^ = r ^ × v ^ = r 2 d φ d t i ^ z =  const  \hat{h}=\hat{r} \times \hat{v}=r^{2} \frac{d \varphi}{d t} \hat{i}_{z}=\text { const } h^=r^×v^=r2dtdφi^z= const 
其中 h ^ \hat{h} h^ 为角动量。可知:
d φ d t = h r 2 \frac{d \varphi}{d t}=\frac{h}{r^{2}} dtdφ=r2h
同时由半通径与角动量的关系:
p = h 2 μ = { a ( 1 − e 2 ) ,  ellipse  a ( − 1 + e 2 ) ,  hyperbola  p=\frac{h^{2}}{\mu}=\left\{\begin{array}{c} a\left(1-e^{2}\right), \text { ellipse } \\ a\left(-1+e^{2}\right), \text { hyperbola } \end{array}\right. p=μh2={a(1e2), ellipse a(1+e2), hyperbola 

轨道角速度

最终可以验证,物体的轨道角速度(真近点角的变化率)也是真近点角的函数:
d φ d t = μ p 3 2 ( 1 + e cos ⁡ φ ) 2 \frac{d \varphi}{d t}=\frac{\sqrt{\mu}}{p^{\frac{3}{2}}}(1+e \cos \varphi)^{2} dtdφ=p23μ (1+ecosφ)2
其中 μ \mu μ 是中心天体引力常数。

附录

轨道六根数转位置速度矢量

轨道坐标系经过三次方向余弦矩阵变换即可变为中心天体惯性系。第一次变换时,轨道平面绕参考坐标系z轴转过 − Ω -\Omega Ω,升交线与参考坐标系x轴重合;第二次变换时,轨道平面绕参考坐标系x轴转过 − i -i i,轨道平面正法向与参考坐标系z轴重合;第三次变换时,轨道平面绕参考坐标系z轴转过 − ω -\omega ω,离心率矢量与参考坐标系x轴重合;另外,在参考坐标系下,物体坐标为 [ r cos ⁡ φ , r sin ⁡ φ , 0 ] ′ {\left[ {r\cos \varphi ,r\sin \varphi ,0} \right]^\prime } [rcosφ,rsinφ,0]。整个过程为欧拉角序列3-1-3。

同时,注意到位置矢量的大小仅是半通径 p p p和真近点角的函数,而半通径可由半长轴和离心率求出,或直接给出:
r = p 1 + e cos ⁡ φ r = \frac{p}{1 + e\cos \varphi } r=1+ecosφp

最终有:
r ^ = R 3 ( − Ω ) R 1 ( − i ) R 3 ( − ω ) [ r cos ⁡ φ r sin ⁡ φ 0 ] \hat r = {R_3}( - \Omega ){R_1}( - i){R_3}( - \omega )\left[{\begin{matrix} {r\cos \varphi }\\ {r\sin \varphi }\\ 0 \end{matrix}} \right] r^=R3(Ω)R1(i)R3(ω)rcosφrsinφ0

r ^ = p 1 + e cos ⁡ φ [ cos ⁡ Ω cos ⁡ ( ω + φ ) − sin ⁡ Ω sin ⁡ ( ω + φ ) cos ⁡ i sin ⁡ Ω cos ⁡ ( ω + φ ) + cos ⁡ Ω sin ⁡ ( ω + φ ) cos ⁡ i sin ⁡ ( ω + φ ) sin ⁡ i ] \hat r = \frac{p}{1 + e\cos \varphi }\left[ {\begin{matrix} {\cos \Omega \cos (\omega + \varphi ) - \sin \Omega \sin (\omega + \varphi )\cos i}\\ {\sin \Omega \cos (\omega + \varphi ) + \cos \Omega \sin (\omega + \varphi )\cos i}\\ {\sin (\omega + \varphi )\sin i} \end{matrix}} \right] r^=1+ecosφpcosΩcos(ω+φ)sinΩsin(ω+φ)cosisinΩcos(ω+φ)+cosΩsin(ω+φ)cosisin(ω+φ)sini

由于运动中除了 φ \varphi φ,其余轨道根数均不变,且轨道六根数可唯一确定位置矢量,因此位置矢量是 φ \varphi φ的函数。从而有:

v ^ = d r ^ d φ d φ d t \hat v = \frac{d\hat r}{d\varphi }\frac{d\varphi }{dt} v^=dφdr^dtdφ

同时注意到真近点角的微分为:
d φ d t = μ p 3 / 2 ( 1 + e cos ⁡ φ ) 2 \frac{d\varphi }{dt} = \frac{\sqrt \mu }{p^{3/2}}{(1 + e\cos \varphi )^2} dtdφ=p3/2μ (1+ecosφ)2
其中 μ \mu μ是[[中心天体引力常数]]。

最后,有:
v ^ = μ p [ − cos ⁡ Ω ( sin ⁡ ( ω + φ ) + e sin ⁡ ω ) − sin ⁡ Ω ( cos ⁡ ( ω + φ ) + e cos ⁡ ω ) cos ⁡ i − sin ⁡ Ω ( sin ⁡ ( ω + φ ) + e sin ⁡ ω ) + cos ⁡ Ω ( cos ⁡ ( ω + φ ) + e cos ⁡ ω ) cos ⁡ i ( cos ⁡ ( ω + φ ) + e cos ⁡ ω ) sin ⁡ i ] \hat v = \sqrt {\frac{\mu }{p}} \left[ {\begin{matrix} { - \cos \Omega (\sin (\omega + \varphi ) + e\sin \omega ) - \sin \Omega (\cos (\omega + \varphi ) + e\cos \omega )\cos i}\\ { - \sin \Omega (\sin (\omega + \varphi ) + e\sin \omega ) + \cos \Omega (\cos (\omega + \varphi ) + e\cos \omega )\cos i}\\ {(\cos (\omega + \varphi ) + e\cos \omega )\sin i} \end{matrix}} \right] v^=pμ cosΩ(sin(ω+φ)+esinω)sinΩ(cos(ω+φ)+ecosω)cosisinΩ(sin(ω+φ)+esinω)+cosΩ(cos(ω+φ)+ecosω)cosi(cos(ω+φ)+ecosω)sini

注:经评论指出, R 3 ( − Ω ) R 1 ( − i ) R 3 ( − ω ) {R_3}( - \Omega ){R_1}( - i){R_3}( - \omega ) R3(Ω)R1(i)R3(ω),应该为 R 3 ( − ω ) R 1 ( − i ) R 3 ( − Ω ) {R_3}( - \omega ){R_1}( - i){R_3}( - \Omega ) R3(ω)R1(i)R3(Ω),但是这样后面的形式也要改,笔者一时找不到其他资料给出与期望一致的形式,所以这里目前存疑,大家使用时需要注意。

位置速度矢量转轨道六根数

位置速度矢量转轨道六根数的过程是依照轨道六根数的定义进行的。
首先求半通径 a a a。若物体的速度大小为 v v v,离中心天体的距离为 r r r,则:
a = ( 2 r − v 2 μ ) − 1 a = {\left( {\frac{2}{r} - \frac{v^2}{\mu }} \right)^{ - 1}} a=(r2μv2)1
a a a应为有限正数。若求出 a a a为无穷,则表明轨道为抛物线,可忽略此步;若求出 a a a为负,则表明轨道为双曲线,需改变 a a a的符号。

进一步求离心率矢量 e ^ \hat e e^
e ^ = 1 μ [ ( v 2 − μ r ) r ^ − ( r ^ ⋅ v ^ ) v ^ ] \hat e = \frac{1}{\mu }\left[ {\left( {v^2} - \frac{\mu }{r} \right)\hat r - \left( {\hat r \cdot \hat v} \right)\hat v} \right] e^=μ1[(v2rμ)r^(r^v^)v^]
轨道六根数中的离心率为离心率标量,即 e ^ \hat e e^的模。若 e e e为零向量,则说明轨道为圆。
再计算角动量 h ^ \hat h h^:
h ^ = r ^ × v ^ \hat h = \hat r \times \hat v h^=r^×v^

若已经认定轨道为抛物线,则依据:
p = h 2 μ p = \frac{h^2}{\mu } p=μh2
求出抛物线的轨道根数之一,即半通径。

已知角动量和z轴单位矢量 z ^ \hat z z^,轨道倾角 i i i即可求:
cos ⁡ i = z ^ ⋅ h ^ h \cos i = \frac{\hat z \cdot \hat h}{h} cosi=hz^h^
再计算升交线矢量 n ^ {\hat n} n^
n ^ = z ^ × h ^ \hat n = \hat z \times \hat h n^=z^×h^
近心点辐角 ω \omega ω可由此计算:
cos ⁡ ω = n ^ ⋅ e ^ n e \cos \omega = \frac{\hat n \cdot \hat e}{ne} cosω=nen^e^
如果 z ^ ⋅ e ^ > 0 \hat z \cdot \hat e > 0 z^e^>0,即离心率矢量与z轴正半轴夹角为锐角,那么 ω < 18 0 ∘ \omega < {180^ \circ } ω<180

升交点经度 Ω \Omega Ω也可算出:
cos ⁡ Ω = n ^ ⋅ x ^ n \cos \Omega = \frac{\hat n \cdot \hat x}{n} cosΩ=nn^x^
y ^ ⋅ n ^ > 0 \hat y \cdot \hat n > 0 y^n^>0,即升交线与y轴交角为锐角,则 Ω < 18 0 ∘ \Omega < {180^ \circ } Ω<180

最后是真近点角 φ \varphi φ
cos ⁡ φ = e ^ ⋅ r ^ e r \cos \varphi = \frac{\hat e \cdot \hat r}{er} cosφ=ere^r^
如果 r ^ ⋅ v ^ > 0 \hat r \cdot \hat v > 0 r^v^>0,即位置矢量与速度矢量之间夹角为锐角,则 φ < 18 0 ∘ \varphi < {180^ \circ } φ<180

由此,椭圆、抛物线或双曲线的轨道根数全部求出。

若轨道在离心率计算时已被认定为圆,则不必计算真近点角 φ \varphi φ与近心点辐角 ω \omega ω,而依照下式计算纬度辐角 u u u
cos ⁡ u = n ^ ⋅ r ^ n r \cos u = \frac{\hat n \cdot \hat r}{nr} cosu=nrn^r^
如果 r ^ ⋅ z ^ > 0 \hat r \cdot \hat z > 0 r^z^>0,即物体在xy平面上方,则 u < 18 0 ∘ u < {180^ \circ } u<180

离心率矢量的表示推导

无外力作用时,两体系统相对运动基本动力学方程如下:

d 2 d t 2 r ^ + μ r 3 r ^ = 0 ^ \displaystyle\frac{{{d^2}}}{{d{t^2}}}\hat r + \frac{\mu }{{{r^3}}}\hat r = \hat 0 dt2d2r^+r3μr^=0^

利用 h ^ = r ^ × v ^ \hat h = \hat r \times \hat v h^=r^×v^对上式进行右乘,得

d 2 d t 2 r ^ × h ^ + μ r 3 r ^ × ( r ^ × v ^ ) = 0 ^ \displaystyle\frac{{{d^2}}}{{d{t^2}}}\hat r \times \hat h + \frac{\mu }{{{r^3}}}\hat r \times (\hat r \times \hat v) = \hat 0 dt2d2r^×h^+r3μr^×(r^×v^)=0^

利用并矢,引入矢量叉乘计算公式

a ^ × ( b ^ × c ^ ) = ( a ^ ⋅ c ^ ) b ^ − ( a ^ ⋅ b ^ ) c ^ \displaystyle\hat a \times (\hat b \times \hat c) = (\hat a \cdot \hat c)\hat b - (\hat a \cdot \hat b)\hat c a^×(b^×c^)=(a^c^)b^(a^b^)c^

上式第二项矢量可化为

r ^ × ( r ^ × v ^ ) = ( r ^ ⋅ d r ^ d t ) r ^ − ( r ^ ⋅ r ^ ) d r ^ d t = 1 2 r ^ d ( r ^ ⋅ r ^ ) d t − r 2 d r ^ d t = r ^ r d r d t − r 2 d r ^ d t = − r 3 d d t ( r ^ r ) \displaystyle\hat r \times (\hat r \times \hat v) = (\hat r \cdot \frac{ {d\hat r}}{ {dt}})\hat r - (\hat r \cdot \hat r)\frac{ {d\hat r}}{ {dt}} = \frac{1}{2}\hat r\frac{ {d(\hat r \cdot \hat r)}}{ {dt}} - {r^2}\frac{ {d\hat r}}{ {dt}} = \hat rr\frac{ {dr}}{ {dt}} - {r^2}\frac{ {d\hat r}}{ {dt}} = - {r^3}\frac{d}{ {dt}}(\frac{ {\hat r}}{r}) r^×(r^×v^)=(r^dtdr^)r^(r^r^)dtdr^=21r^dtd(r^r^)r2dtdr^=r^rdtdrr2dtdr^=r3dtd(rr^)

代回原式得

d 2 r ^ d t 2 × h ^ − μ d d t ( r ^ r ) = 0 ^ \displaystyle\frac{{{d^2}\hat r}}{{d{t^2}}} \times \hat h - \mu \frac{d}{ {dt}}(\frac{ {\hat r}}{r}) = \hat 0 dt2d2r^×h^μdtd(rr^)=0^

考虑到 h ^ {\hat h} h^=const,对上式积分得

d r ^ d t × h ^ − μ r ^ r = c ^ \displaystyle\frac{ {d\hat r}}{ {dt}} \times \hat h - \mu \frac{ {\hat r}}{r} = \hat c dtdr^×h^μrr^=c^

式中, c ^ {\hat c} c^为积分常矢量,引入偏心率矢量 e ^ {\hat e} e^,令 e ^ = c ^ μ \hat e = \frac{ {\hat c}}{\mu } e^=μc^上式改写为

1 μ d r ^ d t × h ^ − r ^ r = e ^ \displaystyle\frac{1}{\mu }\frac{ {d\hat r}}{ {dt}} \times \hat h - \frac{ {\hat r}}{r} = \hat e μ1dtdr^×h^rr^=e^

将离心率矢量 e ^ {\hat e} e^写在方程的左侧,有

e ^ = 1 μ ( v ^ × h ^ ) − r ^ r \displaystyle\hat e = \frac{1}{\mu }(\hat v \times \hat h) - \frac{ {\hat r}}{r} e^=μ1(v^×h^)rr^

再次利用 h ^ = r ^ × v ^ \hat h = \hat r \times \hat v h^=r^×v^可得

e ^ = 1 μ [ v ^ × ( r ^ × v ^ ) ] − r ^ r \displaystyle\hat e = \frac{1}{\mu }[\hat v \times (\hat r \times \hat v)] - \frac{ {\hat r}}{r} e^=μ1[v^×(r^×v^)]rr^

式中第一项方括号内利用并矢形式展开,最终化简可得

e ^ = 1 μ [ ( v ^ ⋅ v ^ ) r ^ − ( v ^ ⋅ r ^ ) v ^ ] − r ^ r = 1 μ [ v 2 r ^ − ( r ^ ⋅ v ^ ) v ^ ] − r ^ r = 1 μ [ ( v 2 − μ r ) r ^ − ( r ^ ⋅ v ^ ) v ^ ] \displaystyle\hat e = \frac{1}{\mu }[(\hat v \cdot \hat v)\hat r - (\hat v \cdot \hat r)\hat v] - \frac{ {\hat r}}{r} = \frac{1}{\mu }[{v^2}\hat r - (\hat r \cdot \hat v)\hat v] - \frac{ {\hat r}}{r} = \frac{1}{\mu }[({v^2} - \frac{\mu }{r})\hat r - (\hat r \cdot \hat v)\hat v] e^=μ1[(v^v^)r^(v^r^)v^]rr^=μ1[v2r^(r^v^)v^]rr^=μ1[(v2rμ)r^(r^v^)v^]

推导完毕。

其他示意图

示意图2
图片来自卫星轨道六根数[宝典] - 豆丁网 https://www.docin.com/mobile/detail.do?id=1439165937

示意图3
在这个图中,轨道平面(orbital plane)(黄色)与参考平面(灰色)相交。对于地球轨道卫星来说,参考平面通常是地球的赤道面,而对于太阳轨道上的卫星来说,它是黄道面。交点称为升交线(line of nodes),因为它将质量中心与上升和下降的节点连接起来。参考平面与春分点(vernal point)(♈︎)一起建立参考框架。

图片来自Orbital elements - Wikipedia https://en.jinzhao.wiki/wiki/Orbital_elements

参考文献:
轨道六根数 - 卫星百科 - 灰机wiki https://sat.huijiwiki.com/wiki/轨道六根数

ps:2022.1.26更新,把第二个示意图移到文末,添加了维基百科上的图。发现已经有3个收藏了,很开心。
ps:2022.4.26更新,发现一个笔误,“近心点辐角”的计算公式复制成了轨道倾角的,真是惭愧可别误导他人了,如果有发现别的错误欢迎评论指出。把“轨道六根数转位置速度矢量,位置速度矢量转轨道六根数,离心率矢量的表示推导”放在末尾的附录了,因为篇幅较长,且内容依赖前文或相对独立。
ps:2022.6.4更新,读者秋水浮萍任鱼跃在评论指出了一个问题,近期查阅一些资料没找到确切结果,就先标记为存疑了。

在Excel中,如果你需要将真近点角(True Anomaly)转换成平近点角(Eccentric anomaly),可以使用一些学公式来计算。由于这涉及到三角函值解算,直接提供一个自定义公式可能会比较复杂,因为Excel本身并不支持复杂的学方程求解。不过,你可以通过VBA宏来编写这个功能,下面是一个简化的步骤: 1. 首先,确保你了解真近点角和平近点角之间的关系。真近点角是从地球到卫星的视线与椭圆相交所对应的夹角,而平近点角是从焦点到卫星的连线与椭圆相切线的夹角。 2. 使用牛顿迭代法等值方法来逼近解,该方法适合于求解非线性方程。一个基本的算法可能涉及以下步骤: a. 初始化一个猜测值(比如0或π/2)作为初始平近点角。 b. 定义一个函f(E) = E - θ(θ是真近点角),其中E是平近点角,θ是给定的真近点角。 c. 计算f(E)的导(对于平近点角来说,通常是1,因为角度变化不会影响距离)。 d. 应用牛顿迭代公式:E_new = E - f(E) / f'(E)。 e. 重复步骤d直到满足某个精度要求(如两次连续迭代结果相差小于预设阈值)。 3. 将上述步骤封装在一个Excel VBA函中,例如: ```vba Function ConvertToEccentricAngle(Theta As Double, Iterations As Long, Tolerance As Double) As Double Dim E As Double Dim DeltaE As Double E = Theta '初始猜测 Do While Abs(DeltaE) > Tolerance DeltaE = E - Theta / (1 + E * Cos(E)) E = E - DeltaE Debug.Print "Iteration: " & Iterations & ", Eccentric Angle: " & E Iterations = Iterations + 1 Loop ConvertToEccentricAngle = Round(E, 4) '保留四位小 End Function ``` 使用时,可以在Excel单元格中输入`=ConvertToEccentricAngle(A1, 50, 0.0001)`,A1存放真近点角的值。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值