蓝桥杯 算法训练 K好数 (数位DP)

问题描述
如果一个自然数N的K进制表示中任意的相邻的两位都不是相邻的数字,那么我们就说这个数是K好数。求L位K进制数中K好数的数目。例如K = 4,L = 2的时候,所有K好数为11、13、20、22、30、31、33 共7个。由于这个数目很大,请你输出它对1000000007取模后的值。

普通数位DP的变形,每一位的上界都是K-1

令X = K-1

从10000…0 到 XXXXX…X 搜索即可。

#include<bits/stdc++.h>

using namespace std;

typedef long long LL;
const LL MOD = 1e9+7;

LL dp[105][105];
int l,k;

//从10000..0 到 XXXXX..X
LL query(int len,int pre){
    if(len==0) return 1;
    if(dp[len][pre]) return dp[len][pre]%MOD;
    
    LL cnt=0;
    for(int i=(len==l?1:0);i<k;i++){
        if(i==pre-1 || i==pre+1) continue;//剪掉
        cnt+=query(len-1,i);
        cnt%=MOD;
    }
    dp[len][pre] = cnt;
    return cnt;
    
}


int main(){
    scanf("%d %d",&k,&l);
    printf("%lld\n",query(l,-1));//设置为-1,让数的最高位都不被剪掉
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值