【保姆级教程】本地部署deepseekR1,ollama+anythingLLM打造个人知识库

目录

1.打造个人知识库的好处

1.1.数据隐私与安全

1.2.定制化与个性化

1.3.成本控制

1.4.知识管理与传承

1.5.离线使用与应急备用

2.部署步骤

2.1Ollama 本地化部署 DeepSeek R1

2.1.1下载Ollama

2.1.2安装Ollama

2.1.3安装DeepSeek R1大模型

2.2部署 AnythingLLM

2.2.1下载AnythingLLM

2.2.2配置模型

2.3创建知识库

2.3.1创建个人知识库

2.3.2测试知识库


1.打造个人知识库的好处

1.1.数据隐私与安全

保护敏感信息:本地部署可以确保这些数据不会离开本地设备或内部网络,避免了数据在传输和存储过程中被泄露的风险。

1.2.定制化与个性化

通过本地部署,用户可以根据自己的需求对模型进行定制和优化,使其更适合自己的业务场景和问题域。

界面个性化:AnythingLLM提供了友好的用户界面,方便用户进行配置和管理。

1.3.成本控制

降低云服务费用:使用云服务来运行大型语言模型通常需要支付较高的费用,尤其是对于长期和大规模的使用来说,成本较高。本地部署可以节省这些云服务费用,降低运营成本。

硬件投资可控:虽然本地部署需要一定的硬件投入,但用户可以根据自己的需求选择合适的硬件设备,并且可以长期使用,投资成本相对可控。

1.4.知识管理与传承

集中管理:将各种文档、笔记、网页等数据源整合到本地知识库中,方便进行集中管理和更新,避免了知识的分散和丢失。

1.5.离线使用与应急备用

无网络依赖:在一些没有网络连接的场景下,如飞机上、偏远地区等,本地部署的知识库仍然可以正常使用,为用户提供持续的服务和支持。

应急备用:在网络故障或不稳定的情况下,本地知识库可以作为应急备用方案,确保工作的正常进行,减少因网络问题带来的损失。

总之,选择DeepSeek+Ollama+AnythingLLM本地部署打造专属知识库,是出于数据隐私与安全、定制化与个性化等多方面的综合考量。这种部署方式不仅能够满足特定场景下的高要求,还能为用户带来更加高效、便捷的知识管理和使用体验。

2.部署步骤

2.1Ollama 本地化部署 DeepSeek R1

2.1.1下载Ollama

访问Ollama官网:Ollama

点击Download,根据你的操作系统(Windows、MacOS 或 Linux)选择对应的安装包进行下载。

2.1.2安装Ollama

下载完成后,运行安装程序,按照提示完成安装。

Windows:直接安装.exe文件,一步一步安装完毕即可。

Mac:将文件下载后,直接将Ollama程序拉到应有程序文件夹即可。

安装完成后,

打开终端或命令提示符(win键+R键,输入cmd回车),

输入以下命令来检查 Ollama 是否安装成功:

ollama --version

如果显示版本信息,说明安装成功。

2.1.3安装DeepSeek R1大模型

目前常用版本以及推荐硬件配置

入门级:1.5B版本(4GB内存+核显可运行)

进阶推荐:8B版本(8GB内存+4GB显存)

高性能设备:32B版本(32GB内存+12GB显存)

我选择的是8B版本

在cmd中输入

ollama run deepseek-r1:8b

过程较长,耐心等待即可

成功之后输入ollama list,出现模型信息即可。

ollama list

常用 Ollama 命令 列出本地可用的模型列表:ollama list

​ 启动模型:ollama run model_name

​ 查看模型信息:ollama show model_name

​ 删除指定模型:ollama rm model_name

2.2部署 AnythingLLM

2.2.1下载AnythingLLM

下载安装 AnythingLLM

​ 访问 AnythingLLM 官网:https://anythingllm.com/desktop

​ 根据你的操作系统选择对应的安装包进行下载。

​ 安装完成后,打开软件,它会自动跳转到 AnythingLLM 界面。

2.2.2配置模型

选择 Ollama 作为模型来源。确保 Ollama 本地部署的模型正常运行,AnythingLLM 会自动检测到本地的 DeepSeek 模型。

配置以下选项:

LLM Selection(大语言模型选择):选择 Ollama。

Embedding Preference(嵌入偏好):选择 AnythingLLM Embedder。

Vector Database(向量数据库):选择 LanceDB。

在 AnythingLLM 界面左下角,选择小扳手进入设置,点击人工智能供应商--LLM首选项

2.3创建知识库

2.3.1创建个人知识库

进入到AnythingLLM界面

在左侧工作区找到上传按钮,上传你的文档(如 PDF、TXT、Excel 、DOCX(DOC文件不行)等),选中上传的文档,点击“移动到工作区”。

步骤1

步骤2

步骤3

点击“Save and Embed”,对文档进行切分和词向量化

步骤4:点击图钉按钮,将这篇文档设置为当前对话的背景文

2.3.2测试知识库

测试知识库,下面显示引用了那个文件的内容,完成。

总结

遵循上述步骤,你将能够在本地迅速搭建一个专属的知识库,并借助DeepSeek、Ollama与AnythingLLM的强劲能力,达成高效的知识管理与问答功能。无论是对个人学习而言,还是企业办公场景,这样的本地知识库都将成为你的得力助手,带来显著便利。

若在部署环节遇到任何难题,欢迎随时在评论区留言探讨。期待本文能助力你勇敢踏出探索AI的第一步,共同开启无限可能!

### 安装Docker 为了在CentOS Linux系统中使用Docker部署应用程序,确保已经安装了Docker。访问 Docker官网(Docker: Accelerated Container Application Development),下载适用于Linux系统的Docker Engine并按照官方指南完成安装过程[^1]。 验证Docker服务是否正常运行可以通过执行`docker info`命令来确认: ```bash docker info ``` 如果一切设置无误,这将返回有关当前Docker配置的信息。 ### 配置文件共享(仅限Mac) 对于特定环境下的文件共享配置,请参阅[Docker Desktop for Mac 文件共享](https://docs.docker.com/desktop/settings/mac/#file-sharing)[^2]。然而,在CentOS环境中,默认情况下不需要特别配置此选项,除非有特殊需求。 ### 使用Docker部署DeepSeekAnythingLLM、OpenWebUI和Ollama #### 获取镜像 针对每一个应用,首先需要拉取对应的Docker镜像。假设这些项目已经在Docker Hub或其他注册表中有公开可用的镜像,则可以使用如下形式的命令获取它们: ```bash docker pull deepseek/image-name docker pull anythingllm/image-name docker pull openwebui/image-name docker pull ollama/image-name ``` 请注意替换上述命令中的`image-name`为实际的应用名称或版本标签。 #### 启动容器 一旦获得了所需的镜像,就可以创建并启动相应的容器实例。这里提供了一个基本的例子用于说明如何操作;具体参数可能依据各个项目的文档有所不同: ```bash docker run -d --name=deepseek-container -p host-port:container-port deepseek/image-name docker run -d --name=anythingllm-container -p host-port:container-port anythingllm/image-name docker run -d --name=openwebui-container -p host-port:container-port openwebui/image-name docker run -d --name=ollama-container -p host-port:container-port ollama/image-name ``` 其中`host-port`代表主机端口而`container-port`则是容器内部的服务监听端口。根据实际情况调整这两个值以避免冲突,并确保外部能够正确访问到服务。 #### 查看日志与管理容器 要查看某个正在运行的容器的日志输出,可利用下面这条指令: ```bash docker logs container-id-or-name ``` 停止、重启或者删除不再使用的容器也可以很容易地做到: ```bash docker stop container-id-or-name docker start container-id-or-name docker rm container-id-or-name ``` 以上就是关于如何在CentOS Linux平台上通过Docker部署指定软件的一般指导流程。更多细节以及高功能请参照各项目的官方文档获得最准确的帮助信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

题安题安

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值