步骤:
1.在前序序列中找到根节点
2.在中序序列中,根据根节点的位置,区分左右子树集合
3.分别列出左右子树的前序序列和中序序列
4.回溯前序序列,重复上述步骤,直到将所有节点集合拆解为叶子节点
举例:
前序(根-左-右):1 2 4 7 3 5 6 8
中序(左-根-右):4 7 2 1 5 3 8 6
1.前序第一个数字是整个二叉树的根节点 ,根节点:1
2.中序序列,以根节点1区分左右子树集合,左子树集合:4 7 2,右子树集合:5 3 8 6
3.左子树的前序序列:2 4 7,中序序列:4 7 2。右子树的前序序列:3 5 6 8 ,中序序列: 5 3 8 6
4.根据拆分的前序序列和中序序列,继续确定根节点,继续拆分
代码:
定义二叉树的类
class TreeNode:
def __init__(self,x):
self.val = x
self.left = None
self.right = None
递归重建二叉树
class Solution:
def reConstructBinaryTree(self, pre, tin):#pre、tin分别是前序序列和中序序列
if len(pre)>0:
root = TreeNode(pre[0]) #前序序列的第一个肯定是当前子树的根节点
rootidx = tin.index(root.val) #返回根节点在中序序列中的位置
root.left = self.reConstructBinaryTree(pre[1:1+rootidx],tin[:rootidx])#重建左子树
root.right = self.reConstructBinaryTree(pre[1+rootidx:],tin[rootidx+1:])#重建右子树
return root
可以采用层序输出的方式验证生成的二叉树是否正确,用先进先出的队列依次保存层序遍历到的节点(该方法在类Solution下),然后遍历每个节点的左子节点和右子节点,代码实现如下:
def PrintFromTopToBottom(self, root):
ans=[]
if root==None:
return ans
else:
q=[root]
while q:
node=q.pop(0)
ans.append(node.val)
if node.left:
q.append(node.left)
if node.right:
q.append(node.right)
return ans
完整代码:
class TreeNode:
def __init__(self,x):
self.val = x
self.left = None
self.right = None
class Solution:
def reConstructBinaryTree(self, pre, tin):#pre、tin分别是前序序列和中序序列
if len(pre)>0:
root = TreeNode(pre[0])
rootidx = tin.index(root.val)
root.left = self.reConstructBinaryTree(pre[1:1+rootidx],tin[:rootidx])
root.right = self.reConstructBinaryTree(pre[1+rootidx:],tin[rootidx+1:])
return root
def PrintFromTopToBottom(self, root):
ans=[]
if root==None:
return ans
else:
q=[root]
while q:
node=q.pop(0)
ans.append(node.val)
if node.left:
q.append(node.left)
if node.right:
q.append(node.right)
return ans
pre = [1, 2, 4, 7, 3, 5, 6, 8]
tin = [4, 7, 2, 1, 5, 3, 8, 6]
a = Solution()
root = a.reConstructBinaryTree(pre,tin)
ans = a.PrintFromTopToBottom(root)
print(ans)
输出: [1, 2, 3, 4, 5, 6, 7, 8]