耕地保护中的遥感技术落地:卫星遥感盯死耕地红线

耕地是保障国家粮食安全的战略性资源,但随着城镇化进程加快和农业结构调整,耕地“非农化”(转为建设用地)和“非粮化”(改种经济作物或挖塘养殖)问题日益突出。

传统人工巡查方式成本高、效率低;卫星遥感技术能够实现快速、动态、精准的耕地监测,为“早发现、早预警、早处置”提供数据支撑。本文梳理了农业遥感在耕地变化监测及非农化、非粮化问题识别的关键技术,为耕地保护政策制定和智慧农业管理提供参考。

一、耕地变化监测的原理与算法

1. 基本原理:

核心原理是通过多时相遥感数据的时空特征对比,识别地表覆盖的显著性差异

  • 数据源
    • 光学遥感(Landsat/Sentinel-2):多光谱信息(如NDVI、NDWI)用来区分植被、水体、裸地。
    • 雷达(Sentinel-1/ALOS):穿透云层监测地表结构变化(如建筑取代农田)。
    • 高分辨率影像(GF-2/WorldView):识别田块边界细微变化。
  • 关键指标
    • 光谱特征:耕地与其他地类(如建筑、林地)的反射率差异。
    • 纹理特征:农田规则纹理 vs. 城市杂乱纹理。
    • 时间序列特征:作物周期性生长曲线(如水稻vs. 多年生林木)。

图源星图云开放平台-农业遥感监测服务

2. 关键技术流程

 3. 应用案例:
  • 中国“三调”工程:利用Sentinel-2和国产高分系列卫星数据,结合随机森林算法,实现全国耕地变化年度监测,发现违规占用耕地行为。

 二、非农化、非粮化(“两非”)监测的原理与算法

核心原理是通过遥感技术捕捉地表覆盖与土地利用的光谱、纹理及时空变化特征,结合智能算法实现自动化识别。

1. 非农化监测(耕地→建筑/工业用地)
  • 特征提取/检测指标

    • 光谱:建筑的高反射率(可见光波段)与低NDVI。

    • 纹理:建筑物规则的几何边缘。

    • 夜间灯光数据(如VIIRS):辅助识别城市扩张。

  • 原理基础

    • 光谱反射特性差异

      • 建筑材料(混凝土/沥青)在可见光波段(450-680nm)反射率显著高于土壤(提升20-40%)
      • 近红外波段(700-1100nm)反射率骤降(植被消失导致NDVI值从>0.6降至<0.3)
    • 算法深度学习变化检测模型提高自动化水平。

2. 非粮化监测(耕地→经济作物/林地/鱼塘)
  • 监测指标

    • 物候差异:粮食作物(如小麦)与经济作物(如果树)生长周期不同(利用时间序列分析NDVI)。

    • 冠层结构:激光雷达(LiDAR)区分低矮作物与高乔木。

  • 原理基础

    • 光谱反射特性差异
      • 果树冠层在红边波段(700-750nm)反射率曲线形态异于粮食作物
      • 水体在短波红外(SWIR,1550-1750nm)吸收率>90%(与土壤形成强对比)
    • 多源融合:光学+雷达数据(如Sentinel-1/2协同)提升分类精度以及监测稳定性。

 图源星图云开放平台-农业遥感监测服务

3. 应用案例 :
  • 江苏省利用Sentinel-1/2时序数据,通过LSTM模型(长短期记忆网络)识别水稻田改种苗木或挖塘养蟹的非粮化行为。

三、结语

农业遥感技术为耕地变化和“两非”监测提供了高效、客观的解决方案。未来,随着卫星星座组网和人工智能技术的发展,遥感会成为耕地保护的核心技术手段,为全球粮食安全与可持续发展提供有力支撑。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值