LangChain Core架构解析:模块化设计与LCEL原语实现原理

图片

LangChain Core Introduction

LangChain Core定义了LangChain生态中最核心的最基础的抽象和LCEL原语(LangChain表达式语言)。

设计原则

遵循 模块化设计 和 极简风格

设计哲学:约定优于配置(Convention Over Configuration)

  • • 模块化设计: 各个抽象对象相互独立,不与任何特定LLM绑定。

    • • 主要包括LM、Document Loader、Embedding、VectorStore、Retriever等抽象

  • • 极简风格: 接口设计简洁直观,避免过度封装。

优势: 任何provider都可以实现相关接口然后加入LangChain生态系统

核心抽象

核心抽象包括: 接口 + 协议 + 语法

三位一体的设计架构:

  • • 接口: 包括核心组件的接口(比如chat models, LLMs, vector stores, retrievers等等)

  • • 协议: 通用调用协议(Runnable抽象)

  • • 语法: LCEL (LangChain Expression Language), 用来声明编排各个组件

Runnable接口

  • • Runnable接口是LangChain设计的基石(类似Java中的Runnable接口), 实现了与所有组件的标准化交互, 并通过LCEL实现各组件的组合

  • • 它代表一个可以被调用的、可并行化的、可流处理的、可变换的、可组合的工作单元


主要作用

  • • 统一的调用接口: 所有组件通过标准方法集(invoke/ainvoke, stream/astream, batch/abatch)提供一致的使用体验

  • • 并行化: 批处理操作batch

  • • 异步支持: a(async)开头的方法ainvoke, astream, abatch

  • • 可组合性: 通过pipe语法实现各组件的组合


使用方式
Runnable接口的使用方式包括: 声明式 和 立即执行

  • • 声明式: 通过LCEL声明,lazy执行,类似spark的transform

  • • 立即执行: 调用invoke等方法,立即执行,类似spark的action

主要抽象类家族

图片

LCEL

LCEL全称 LangChain Expression Language ,是一种声明式语言,用来组合LangChain Core的Runnable成各种序列或DAG,满足由LLM驱动的AI应用的常用组合模式的开发。
LangChain Core会将LCEL编译为优化的执行计划,并自动支持并行化、流式传输、过程跟踪和异步执行。

  • • LCEL通过以下机制实现高效执行

  1. 1. 自动优化:编译时合并操作符,减少调用开销

  2. 2. 透明并行:自动检测可并行执行的组件

  3. 3. 错误传播:异常处理链路贯穿整个工作流

主要组合原语是RunnableSequenceRunnableParallel
RunnableSequence 按顺序依次调用一系列runnables。并且用上一个Runnable的输出作为下一个Runnable的输入
构建方式

  • • 多个Runnable实例通过 | 运算符连接

  • • 通过传入多个Runnable实例列表给RunnableSequence直接创建。

RunnableSequence 实例

from langchain_core.runnables import RunnableLambda


# 示例1:创建简单计算流水线
# 通过 `|` 创建 RunnableSequence 实例
sequence = RunnableLambda(lambda x: x + 1) | RunnableLambda(lambda x: x * 2)
print(type(sequence))
# 输出: <class 'langchain_core.runnables.base.RunnableSequence'>

# 单个输入调用 invoke
invoke_result = sequence.invoke(1)
print(type(invoke_result), invoke_result)
# 输出: <class 'int'> 4

# 批处理 batch
batch_result = sequence.batch([1, 2, 3])
print(type(batch_result), batch_result)
# 输出: <class 'list'> [4, 6, 8]

RunnableParallel 并发调用一系列runnables。并且用同样的输入作为每一个Runnable的输入
构建方式

  • • 多个Runnable实例通过 | 运算符连接

  • • 通过传入多个Runnable实例列表给RunnableSequence直接创建。

RunnableParallel实例

from langchain_core.runnables import RunnableLambda


# 示例2:创建并行计算分支
# 使用 dict 创建 RunnableParallel 实例
sequence = RunnableLambda(lambda x: x + 1) | {
    'mul_2': RunnableLambda(lambda x: x * 2),
    'mul_5': RunnableLambda(lambda x: x * 5),
}
print(type(sequence))
# 输出: <class 'langchain_core.runnables.base.RunnableSequence'>

# 单个输入调用 invoke
invoke_result = sequence.invoke(1)
print(type(invoke_result), invoke_result)
# 输出: <class 'dict'> {'mul_2': 4, 'mul_5': 10}

::: tip 小提示
RunnableLambda是一个可以将一个python callable转换成一个Runnable实例的类。上述实例用来转换lambda函数。
:::

Reference

LangChain Core架构解析:模块化设计与LCEL原语实现原理

用真话讲AI,回归技术本质,拒绝神话或妖魔化。搜索 "大千AI助手" 关注我,一起撕掉过度包装,学习真实的AI技术!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值