Linux安装cuda如何修改目录,如何在linux上搭建深度学习环境 :Ubuntu16.04 上显卡驱动、CUDA、cuDNN、tensorflow安装...

1,首先要有台牛逼的主机,主机上要有英伟达的显卡 NVIDIA+CUDA目前在机器学习领域的地位还无人能够撼动

如何配主机请参照以下链接

2,Ubuntu系统安装好,考虑到大多数人都要装双系统具体可以参考以下链接

3,NVIDIA显卡驱动安装

注意Ubuntu自带的驱动更新可以完成这样的操作而且不用输命令!

点左边栏的设置,下面找到“Software & Updates”,在点上面的“Additional Drivers”,会发现会有一个显卡的驱动,恰好和要找的版本相同~选中之后确认更新即可。在这里新出的显卡核心都可以检测成功 ,自动安装驱动。不需要手动去下载驱动安装。

a2fa4e580c265d13f59a4a8f66c0b330.png

接下来安装CUDA 和cuDNN ,2018年五月版本应该是 cuDNN v7.0.5 for CUDA 9.0

4,安装CUDA

还是先进网页下载

75550ad00d3386ff193c54dadeca35c5.png 

之后按照要求,运行:

sudo sh cuda_9.0.176_384.81_linux.run

之后会有三个提示:

是否安装驱动(装过的不要装)

是否安装CUDA(yes)

是否安装sample(看自己)

结束之后会有摘要:

===========

= Summary =

===========

Driver: Not Selected

Toolkit: Installed in /usr/local/cuda-version

Samples: Not Selected

Please make sure that

– PATH includes /usr/local/cuda-version/bin

– LD_LIBRARY_PATH includes /usr/local/cuda-version/lib64, or, add /usr/local/cuda-version/lib64 to /etc/ld.so.conf and run ldconfig as root

接下来是添加到环境变量。

首先打开文件:

sudo vim /etc/profile

在最下面添加两行:

export PATH=/usr/local/cuda-9.0/bin:$PATH

export LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64:$LD_LIBRARY_PATH

至此CUDA安装结束~

5,安装cudnn

cuDNN v7.0.5 for CUDA 9.0cuDNN(请检查兼容性再下载):https://developer.nvidia.com/rdp/cudnn-download

1.下载cuDNN压缩包;2.对下载文件进行解压:

tar -zxvf cudnn-9.0-linux-x64-v7.0.5.1.tgz

3.解压后会看到一个cuda文件夹,里面包含了include以及lib64两个子目录。我们需要做的就是将这两个字母里面的文件复制到cuda对应的安装目录。这里以cuda的安装目录为/usr/local/cuda/,这个目录下也会包含include/以及lib64/这两个文件夹,将之前目录的文件复制过来即可。

sudo cp -p cuda/include/cudnn.h /usr/local/cuda/include

sudo cp -p cuda/lib64/* /usr/local/cuda/lib64/

6,tensorflow-GPU安装

pip install tensorflow-gpu

没有提示失败就成了,安装过程中有可能需要root权限,命令前加上 sudo就行了

在Python环境中输入:

import numpy

import tensorflow as tf

a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')

b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')

c = tf.matmul(a, b)

sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))

之后就会出现详细的信息:

Device mapping:

/job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: Tesla K40c, pci bus

id: 0000:05:00.0

b: /job:localhost/replica:0/task:0/device:GPU:0

a: /job:localhost/replica:0/task:0/device:GPU:0

MatMul: /job:localhost/replica:0/task:0/device:GPU:0

[[ 22. 28.]

[ 49. 64.]]

出现GPU:0就是你的显卡,这样就能确定是显卡在工作了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值