matlab seed函数_如何用matlab生成随机数函数_matlab随机数生成函数

本文详细介绍了MATLAB中用于生成随机数的rand和randn函数,包括它们的基本用法、参数设置及如何转换随机数区间。rand函数用于生成[0,1)之间的均匀分布随机数,而randn函数则生成符合标准正态分布的随机数。通过设定seed值,可以确保重复生成相同的随机数序列。此外,文章还提到了randperm和randint等其他随机数生成函数。" 133592048,19694662,Linux Shell中的if语句详解与示例,"['Linux', '运维', '编程', 'Shell脚本']
摘要由CSDN通过智能技术生成

如何用matlab生成随机数函数

1. MATLAB 函数 rand

产生在区间 (0, 1)的均匀随机数,它是平均分布在 (0,1)之间。一个称为seed的值则是用来控制产生随机数的次数。均匀随机数函数的语法为rand(n),rand(m,n),其结果分别产生一矩阵含n×n个随机数和一矩阵含m×n的随机数。注意每次产生随机数的值都不会一样,这些值代表的是随机且不可预期的,这正是我们用随机数的目的。我们可利用这些随机数代入算式中,来表示某段讯号的不规则振幅或是某个事件出现的机率。均匀随机数其值平均的分布于一区间的特性可以从其统计密度函数(probabilitydensity function, PDF)说明。从其PDF分布类似长条图的分布,可以看出其每一个随机数值出现的机率皆相同,所以它被称为均匀随机数。

见以下的例子:

>> rand(1,6) % 第一次使用随机数产生器

ans =

0.2190 0.0470 0.6789 0.6793 0.9347 0.3835

>>hist(ans) % 看看长条图的长相

>>plot(ans) % 比较上个图与这个图有何差异?何者能代表不规则数据的分布

>> rand(1,6) % 第二次使用随机数产生器,注意每次产生的随机数值皆不同

ans =

0.5194 0.8310 0.0346 0.0535 0.5297 0.6711

因为每次随机数产生的值皆不同,如果因为验证算式需要确定所使用的随机数值是相同的,可以利用seed这个选项,用以设定使用计算随机数产生器的起始值,其语法为rand(‘seed’,n),n的规定是。其中n=0有特别意义是使用第一次产生随机数值的起始值(=931316785),其它的n值即是所使用起始值。如果使用相同的起始值,则随机数值会一样,因为随机数的计算是依据起始值。请看以下的例子:

>> rand(‘seed’,0) % 将随机数值的起始值重设,相当于是第一次产生随机数值

>>rand(‘seed’) % 显示现在使用的 seed 值=931316785

ans =

931316785

>> rand(2,3) % 注意随机数值的上下限介于 [0,1] 区间

ans =

0.2190 0.6789 0.9347

0.0470 0.6793 0.3835

>> rand(‘seed’) % 显示再产生随机数值所用的seed=412659990

ans =

412659990

>> rand(‘seed’,0)

>> rand(1,6)

ans =

0.2190 0.0470 0.6789 0.6793 0.9347 0.3835

>> rand(‘seed’,100) % 设定随机数值的起始值=100

>> rand(‘seed’)

ans =

100

>> rand(2,5)

ans =

0.2909 0.0395 0.3671 0.5968 0.9253

0.0484 0.5046 0.9235 0.8085 0.3628

如果需要产生随机数值不是介于[0,1]区间,可以采用以下步骤将随机数值从[0,1]区间转换到其它区间。假设要得到一组随机数值是介于[2,4]区间,我们先产生一组随机数介于[0,1]区间 ,再将其值乘以2,因为2等于区间上下限的差值(4-2)。接著再加上下限值(2),即可得到随机数值是介于[2,4]区间。例如区间为[a,b],a为下限值,b为上限值。则算式如下

x=(b-a)*r + a,

其中x代表转换后的随机数值的阵列。请看下列示范:

>>data_1 = 2*rand(1,500)+2; %原随机数值有500个

>>plot(data_1) %这个图是否看来眼熟?

>>axis([1 500 0 6]) %调整横轴/纵轴上下限

>>hist(data_1) %看看其长条图

2. MATLAB 函数randn

产生常态随机数,它是以高斯分布在随机数出现的上下限区间。常态随机数其值分布于一区间的特性可以从其统计密度函数(PDF)说明。从其 PDF分布可以看出其每一个随机数值出现的机率皆不相同,靠近中间的随机数值出现的机率比起两端的值要高,这是一般不规则现象较可能出现的情形,所以它被称为常态随机数。由于常态随机数并非以上下限来定义,它是用数据的平均值和方差定义之。因此在产生一常态随机数时,需设定平均值和方差的大小。randn(n)和randn(n,m)是分别产生一矩阵含n×n个随机数和一矩阵含m×n的常态随机数,其平均值为0方差为1。

见以下的例子:

>> x=-2.9:0.2:2.9; % 这个例子用到 hist 函数来画出二种随机数的分布图

>> y=randn(1,5000);

>> hist(y,x)

>> title(‘Histogram of Normal Random Data’)

>> y1=rand(1,5000);

>> hist(y1,x)

>> title(‘Histogram of Uniform Random Data’)

如果需要产生常态随机数值的平均值和方差并非0和1,可以采用以下步骤将平均值和方差做转换。假设要得到一组常态随机数值的平均值为b和方差为a,我们先产生一组随机数r,再将其值乘以方差a。接著再加平均值b。算式如下:

x=a*r + b

其中x代表转换后的随机数值的阵列。请看下列示范:

>>data_2 = randn(1,500)+3 %原随机数值有500个

>>plot(data_2) %这个图是否看来眼熟?

>>axis([1 500 0 6])

>>hist(data_2) %看看其长条图

3.randperm(n)

产生一个1到n之间自然数的随机排列

4.randint(m,n,[1 N])

生成m×n的在1到N之间的随机整数矩阵,其效果与randint(m,n,N+1)相同。

matlab生成随机数函数

rand(n):生成0到1之间的n阶随机数方阵 rand(m,n):生成0到1之间的m×n的随机数矩阵 (现成的函数)

另外:

Matlab随机数生成函数

betarnd 贝塔分布的随机数生成器

binornd 二项分布的随机数生成器

chi2rnd 卡方分布的随机数生成器

exprnd 指数分布的随机数生成器

frnd f分布的随机数生成器

gamrnd 伽玛分布的随机数生成器

geornd 几何分布的随机数生成器

hygernd 超几何分布的随机数生成器

lognrnd 对数正态分布的随机数生成器

nbinrnd 负二项分布的随机数生成器

ncfrnd 非中心f分布的随机数生成器

nctrnd 非中心t分布的随机数生成器

ncx2rnd 非中心卡方分布的随机数生成器

normrnd 正态(高斯)分布的随机数生成器

poissrnd 泊松分布的随机数生成器

raylrnd 瑞利分布的随机数生成器

trnd 学生氏t分布的随机数生成器

unidrnd 离散均匀分布的随机数生成器

unifrnd 连续均匀分布的随机数生成器

weibrnd 威布尔分布的随机数生成器

喜欢 (1)or分享 (0)

% Known encoding formats are the following FDSN codes: % 0: ASCII % 1: 16-bit integer % 2: 24-bit integer (untested) % 3: 32-bit integer % 4: IEEE float32 % 5: IEEE float64 % 10: Steim-1 % 11: Steim-2 % 12: GEOSCOPE 24-bit (untested) % 13: GEOSCOPE 16/3-bit gain ranged % 14: GEOSCOPE 16/4-bit gain ranged (untested) % 19: Steim-3 (alpha and untested) % % See also MKMSEED to export data in miniSEED format. % % % Author: Franois Beauducel % Institut de Physique du Globe de Paris % Created: 2010-09-17 % Updated: 2012-04-21 % % Acknowledgments: % Ljupco Jordanovski, Jean-Marie Saurel, Mohamed Boubacar, Jonathan Berger, % Shahid Ullah. % % References: % IRIS (2010), SEED Reference Manual: SEED Format Version 2.4, May 2010, % IFDSN/IRIS/USGS, http://www.iris.edu % Trabant C. (2010), libmseed: the Mini-SEED library, IRIS DMC. % Steim J.M. (1994), 'Steim' Compression, Quanterra Inc. % History: % [2012-04-21] % - Correct bug with Steim + little-endian coding % (thanks to Shahid Ullah) % [2012-03-21] % - Adds IDs for warning messages % [2011-11-10] % - Correct bug with multiple channel name length (thanks to % Jonathan Berger) % [2011-10-27] % - Add LocationIdentifier to X.ChannelFullName % [2011-10-24] % - Validation of IEEE double encoding (with PQL) % - Import/plot data even with file integrity problem (like PQL) % [2011-07-21] % - Validation of ASCII encoding format (logs) % - Blockettes are now stored in substructures below a single % field X.BLOCKETTES % - Add import of blockettes 500 and 2000 % - Accept multi-channel files with various data coding % [2010-10-16] % - Alpha-version of Steim-3 decoding... % - Extend output parameters with channel detection % - Add gaps and overlaps on plots % - Add possibility to force the plot % [2010-10-02] % - Add the input formats for GEOSCOPE multiplexed old data files % - Additional output argument with gap and overlap analysis % - Create a plot when no output argument are specified % - Optimize script coding (30 times faster STEIM decoding!) % % [2010-09-28] % - Correction of a problem with STEIM-1 nibble 3 decoding (one % 32-bit difference) % - Add reading of files without blockette 1000 with additional % input arguments (like Seismic Handler output files). % - Uses warning() function instead of fprintf().
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值