全局稳定性收敛平衡点为0吗_(3)Lyapunov函数与Autonomous System的稳定性判别

本文详细介绍了李雅普诺夫函数的概念及其在判定自治系统稳定性中的应用,包括正定和半正定函数的定义、平衡点的稳定性定义,以及局部稳定和全局稳定李雅普诺夫定理。通过这些理论,可以分析非线性系统或时变系统的稳定性。
摘要由CSDN通过智能技术生成

本文主要参考《Applied Nonlinear Control》(Slotine,Li等著)这本书。如有错误疏漏,烦请指出。如需转载,请联系笔者,Dr.shenyue@http://gmail.com。沈月:(2)Autonomous System的稳定性定义​zhuanlan.zhihu.com

本文和另外一篇文章La Salle不变集原理与渐近稳定将讲述稳定性判断的一些定理,统称为Lyapunov直接法。之所以需要这些判定稳定性的定理,是因为就像Autonomous System的稳定性定义文中所讲:对于线性系统来说

,通常x(t)有解析解比如

,根据解析解,画出它的曲线,就可以看出系统稳定不稳定了。对于非线性系统或者时变系统,也就是

不是状态量x的线性方式,因为非线性微分方程求解非常非常难,通常得不到x(t)解析解,就不能通过画出它的曲线看出稳定性,这时候就需要借助一些稳定性判定的工具了。

一、正定和半正定函数

函数V(x),如果x取值在半径为Ro的球内,且满足V(x)是标量函数

V(x)是连续函数

x=0时, V(x)=0

x不等于0时,V(x)>0(或者V(x)<0)

那么我们称V(x)是局部正定(负定)的。如果Ro换成无穷大,以上两个条件依然满足,则称V(x)是全局正定(负定)的。如果以上前3个条件不变,第4个条件变成

(或者

),那么称V(x)是局部或全局半正定(半负定)的。

为什么要求V(x)具有这些性质呢?为了保证在V(x)在该区域内有唯一的最小值(unique minimum)。为什么不希望拥有两个或者多个最小值?多个最小值,就无法确定系统收敛到哪个最小值,无法确认收敛在哪里,就意味着无法控制系统到指定位置,这是谁都不喜欢也不想要的。

二、李雅普诺夫函数

V(x)在x取值为半径为Ro的球内,被认定是李雅普诺夫函数,必须满足以下6个条件V(x)正定的(不是半正定)

V(x)对x具有连续一阶偏导(不是对t)

是半负定的(不是负定)

三、平衡点的稳定性定义

平衡点x=0被认为是稳定的,如果任意给定R>0,总能找到一个r>0,只要x(0)起始于r的球内,经过时间t,x(t)是总在待在R球内。

平衡点x=0被认为是不稳定的,如果存在至少一个给定的R>0,永远无法找到r>0,使得只要x(0)起始于r的球内,经过时间t,x(t)是总在待在R球内。也就是无论你怎么找r,哪怕r无限接近于0,只要r>0,r不等于0,那么x(t)永远会跑出R球。

四、针对平衡点的局部稳定与全局稳定判定

通常一个Lyapunov定理有如下的形式:存在

满足某些条件,那么系统的trajectory,也就是x(t)会满足一些性质,比如收敛或者有界之类的性质。

局部稳定李雅普诺夫定理(Lyapunov Theorem for Local Stability):如果存在至少一个函数V(x)在x取值为半径为Ro的球内,满足 是局部正定的

具有局部对x的连续一阶偏导(注意不是对t)

是局部半负定的

那么称平衡点0(为什么这里是说平衡点0,不是平衡点1,或者任意初始状态x0?)是局部稳定的。如果

变成是负定,那么称平衡点0是局部渐近稳定的。关于函数和它的一阶导数的渐近特性:(1)微积分的一个最基本的结论之一:函数V(x)是有下界的(lower bounded),并且函数的一阶导数

是小于等于0,那么该函数一定收敛于一个值(具体哪个值,不知道);(2)函数的一阶导数

,推不出函数本身收敛。比如

,一阶导数收敛于0,但是函数本身一直在非常缓慢地正弦波动;(3)函数f收敛,推不出函数的一阶导数 。比如

,函数收敛,一阶导数却趋于无穷,函数在收敛的值上下快速波动。

Barbalat‘s Lemma:函数f可导,且随着

,函数f存在有限极限;如果进一步函数f的一阶导数

一致连续(比“连续”要求更高),那么函数的一阶导数

这里跑题唠叨一句:一致连续就是如果对连续函数f(x),任意选取x的某个宽度的

,总能找到某个长度的对应的

,使得宽为

、高为

的矩形窗口,如果沿着f(x)曲线上走,所有的f(x)都在该窗口内部。如果任意选取x的某个宽度的

,永远找不到对应高度的

也就是高度只能是无穷,那么连续函数f(x)就不是一致连续。

疑问:以上定理中稳定的结论是怎么得到的?基于微积分的一个最基本的结论之一:函数V(x)是有下界的(lower bounded),并且函数的一阶导数是小于等于0,那么该函数一定收敛于一个值。V(x)正定,保证了V(x)有下界0。加上V(x)的一阶导数是半负定的,就保证V(x)会收敛到一个值,所以稳定。如果V(x)的一阶导数是负定的,就保证V(x)一定收敛到它的下界0,又因为V(x)是正定的【意味着只有在x=0时,V(x)才等于0】,所以V(x)=0一定推出x=0,也就是系统状态收敛到0,所以系统渐近稳定。

全局稳定李雅普诺夫定理(Lyapunov Theorem for Global Stability):全局稳定只是简单地把局部稳定定义中的x的取值半径Ro扩大为无穷大吗?答案是NO!那么全局稳定还需要哪些额外条件呢?平衡点0被认为是全局稳定的,除了满足局部稳定的3个条件,把半径Ro扩大为无穷大,还必须满足的额外条件:x趋于无穷时,V(x)必须也趋于无穷(Radially unbounded)。(x是向量时,x中任意一个元素趋于无穷,V(x)必须趋于无穷。例如

就不满足x趋于无穷时V(x)为无穷,V(x)反而趋于0)

Remarks本文第四段基于李雅普诺夫函数下得出的稳定性结论只是充分条件,不是必要条件。

同一个系统,可能存在多个李雅普诺夫函数。假设V(x)是一个系统的李雅普诺夫函数,那么a*V(x)也是该系统的李雅普诺夫函数(要求a>0)。V(x)的b次方(要求b>1)也是该系统的李雅普诺夫函数。

有些选择的李雅普诺夫函数得出的稳定性结论,可能另外一些李雅普诺夫函数,可能得出渐近稳定的结论。即选择有些李雅普诺夫函数得出的稳定性结论可能会比其他的保守。

一个V(x)无法满足推出

负定或者半负定的要求,不代表该系统不稳定。它只是告诉你,这个V(x)选择不对,你可能需要尝试另外一个不同的V(x)。

系统的不变集其实不只是平衡点,只针对平衡点进行稳定性判定,结论太保守。

五、总结

局部稳定李雅普诺夫定理(Lyapunov Theorem for Local Stability)和全局稳定李雅普诺夫定理(Lyapunov Theorem for Global Stability)构成了Equilibrium Point Theorems,因为都是针对平衡点得出的稳定性结论!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值