1、如何判断正定、负定、半正定、半负定、局部、全局
给你一个lyaunov函数,首先要保证这个函数是正定的。如果不是正定,要限制x1,x2变量让V(x)为正定,称其为局部正定,如果对于这个函数任意的x都满足V(x)正定,那么V(x)为全局正定,意思是如果x受限为局部,不受限为全局。(V(x)导数相同)那么lyapunov函数V(x)正定的定义是什么?正定、半正定、负定、半负定在判断时是非常重要的。
首先V(0)=0,然后判断除去(0,0)点以外是否还有使V(x)=0的矢量。如果有,那么这个V(x)就是半正定、半负定。当v(x)除(0,0)点恒大于0或小于0,那么它就是正定或负定。
2、判断稳定、全局、局部
判断稳定的重要条件是V(x)的导数,V(x)对x1和x2分别求偏导。判断V(x)的导数,如果V(x)的导数包含x1和x2且不能保证V(x)导数恒小于0,则不能分析。如果只包含x1或x2,x1或x2在一定范围内恒小于0,那么V(x)为局部半负定,需要使用局部不变集定理,稍后再讲。
1、局部渐进稳定
V(x)(局部)正定
V(x)导数(局部)负定
为局部渐近稳定。
2、全局渐进稳定
V(x)全局正定
V(x)导数全局负定
||x||趋近无穷,V(x)趋近无穷
为全局渐进稳定。
3、局部不变集定理
V(x)(局部)正定
V(x)导数(局部)半负定
这时取令V(x)导数等于0的集合,如果这个集合中包含(0,0)点,那么根据局部不变集定理,就是稳定的。
4、全局不变集
V(x)全局正定
V(x)导数(全部)半负定
||x||趋近无穷,V(x)趋近无穷
那么就全局渐进稳定。
弄懂全局,局部,正定、负定、半正定、半负定是非常重要的,弄懂了这几个,判定稳定还是很容易的。以上个人见解,如有错误感谢各位帮我纠错,图片来源b站-指纹学控制-https://space.bilibili.com/1617462656