箭头 运算符_大数数学入门-Part03-高德纳箭头的极限

v2-88849f204b9c8763f6222f326e641644_1440w.jpg?source=172ae18b

高德纳箭头的极限

高德纳箭头

和定义

以及
一样,可以用一种通用的方法来定义

为了表述方便,将

记为

高德纳箭头表示法:

运算符是右结合的。

例如:

如果将对第

级运算的迭代称为第
级运算,而且将指数称为三阶运算,那么
就是第
级运算。

突破高德纳箭头

高德纳箭头对于次数的迭代也已经是封闭的了:对于

而言,无论是对于
迭代,还是对于
迭代,都能够限制在
的范围内。

然而,在定义高德纳箭头表示法的时候,我们引入了一个新的参数:箭头的数量

。它是三个参数中最为敏感的:

这里的

是指
情况。因此:
不会在固定的
的范围内。

然后,我们可以对

进行迭代,定义
为:

因此:

算上顶层一共有

层。

这是高德纳箭头的表示极限,任何突破了这个极限的数都没有办法使用高德纳箭头简洁地表示。

葛立恒数

大家所熟知的葛立恒数就在这个位置。

葛立恒数是

,其中
的定义是:

可以发现:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值