Yolov5-执行命令参数总结
应用举例
1、选择某一个训练好的模型文件,其中参数量和模型规模存在差异。
python detect.py --weights yolov5x.pt
2、对指定目录下的图片进行检测识别
source:检测目标,可以时单张图片、文件夹、屏幕或者是摄像头。
python detect.py --weights yolov5x.pt --source data/images/bus.jpg
3、对屏幕进行识别,判断是否有可识别的对象存在
python detect.py --weights yolov5x.pt --source screen
会生成如下结果,表示当前屏幕界面中没有监控项。
各个参数的解释:
运行时参照上述的命令进行编写。
weights
: 模型路径或Triton URL,指定用于目标检测的预训练模型。source
: 输入数据的来源,可以是文件、目录、URL、通配符、屏幕截图或摄像头索引(0表示默认摄像头)。data
: 数据集配置文件的路径,用于指定数据集的相关信息和预处理方法。imgsz
: 推理时图像的大小,以像素为单位,格式为(height, width)。conf_thres
: 置信度阈值,只有置信度大于该阈值的目标才会被检测出来。iou_thres
: NMS(非极大值抑制)的IOU阈值,用于筛选重叠程度较高的边界框。max_det
: 每张图像的最大检测数量。device
: 使用的计算设备,可以是CUDA设备的索引或者’cpu’。view_img
: 是否显示检测结果的图像。save_txt
: 是否将检测结果保存为文本文件。save_conf
: 是否在保存的标签中包含置信度信息。save_crop
: 是否保存裁剪后的预测框图像。nosave
: 是否不保存图像或视频。classes
: 根据类别进行过滤,例如"–class 0"表示只检测类别为0的目标。agnostic_nms
: 是否使用类别无关的NMS算法。augment
: 是否进行数据增强推理。visualize
: 是否可视化特征图。update
: 是否更新所有模型。project
: 结果保存的目录。name
: 结果保存的名称。exist_ok
: 如果存在相同的项目/名称,是否继续执行而不增加编号。line_thickness
: 边界框的线条粗细(以像素为单位)。hide_labels
: 是否隐藏标签。hide_conf
: 是否隐藏置信度信息。half
: 是否使用FP16半精度浮点数进行推理。dnn
: 是否使用OpenCV DNN进行ONNX推理。vid_stride
: 视频帧率步长。