【学习笔记】-Yolov5-执行命令参数总结

本文详细介绍了Yolov5框架的命令行参数,包括模型选择、图像检测、屏幕识别以及各种参数如模型权重、输入源、数据预处理等的使用方法,适合初学者理解和实践。
摘要由CSDN通过智能技术生成

Yolov5-执行命令参数总结

Yolov5-环境安装部署(Mac系统)

应用举例

1、选择某一个训练好的模型文件,其中参数量和模型规模存在差异。
在这里插入图片描述

python detect.py --weights yolov5x.pt      

2、对指定目录下的图片进行检测识别
source:检测目标,可以时单张图片、文件夹、屏幕或者是摄像头。

python detect.py --weights yolov5x.pt  --source data/images/bus.jpg     

3、对屏幕进行识别,判断是否有可识别的对象存在

python detect.py --weights yolov5x.pt  --source screen

会生成如下结果,表示当前屏幕界面中没有监控项。

在这里插入图片描述

各个参数的解释:

运行时参照上述的命令进行编写。

  • weights: 模型路径或Triton URL,指定用于目标检测的预训练模型。
  • source: 输入数据的来源,可以是文件、目录、URL、通配符、屏幕截图或摄像头索引(0表示默认摄像头)。
  • data: 数据集配置文件的路径,用于指定数据集的相关信息和预处理方法。
  • imgsz: 推理时图像的大小,以像素为单位,格式为(height, width)。
  • conf_thres: 置信度阈值,只有置信度大于该阈值的目标才会被检测出来。
  • iou_thres: NMS(非极大值抑制)的IOU阈值,用于筛选重叠程度较高的边界框。
  • max_det: 每张图像的最大检测数量。
  • device: 使用的计算设备,可以是CUDA设备的索引或者’cpu’。
  • view_img: 是否显示检测结果的图像。
  • save_txt: 是否将检测结果保存为文本文件。
  • save_conf: 是否在保存的标签中包含置信度信息。
  • save_crop: 是否保存裁剪后的预测框图像。
  • nosave: 是否不保存图像或视频。
  • classes: 根据类别进行过滤,例如"–class 0"表示只检测类别为0的目标。
  • agnostic_nms: 是否使用类别无关的NMS算法。
  • augment: 是否进行数据增强推理。
  • visualize: 是否可视化特征图。
  • update: 是否更新所有模型。
  • project: 结果保存的目录。
  • name: 结果保存的名称。
  • exist_ok: 如果存在相同的项目/名称,是否继续执行而不增加编号。
  • line_thickness: 边界框的线条粗细(以像素为单位)。
  • hide_labels: 是否隐藏标签。
  • hide_conf: 是否隐藏置信度信息。
  • half: 是否使用FP16半精度浮点数进行推理。
  • dnn: 是否使用OpenCV DNN进行ONNX推理。
  • vid_stride: 视频帧率步长。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值