线性代数笔记:逆矩阵及伪逆矩阵,最小二乘估计,最小范数估计

逆矩阵的概念

矩阵A的逆矩阵(matrix inversion)记作 A − 1 A^{−1} A1,其定义的矩阵满足如下条件:
A − 1 A = I n A^{−1}A=I_n A1A=In

我们为什么需要逆矩阵?

我们为什么需要逆矩阵?(从加减乘除的运算角度来解释)
因为矩阵没有被除的概念,矩阵的逆正好是被我们用来解决除法的问题。
例如我们知道矩阵A和矩阵B,并且想要找到矩阵X。
X A = B XA = B XA=B
那最好的方法就是直接除以A(得到X = B / A),但事实上我们不能直接除以矩阵A。
但是我们却可以在公式两边都乘以 A − 1 A^{-1} A1

用矩阵多项式来举例:
样本集X和标签Y,当样本集大小刚好等于X的维度时,可以直接用X的逆矩阵求出权重向量a。
在这里插入图片描述

伪逆矩阵和最小二乘估计

而在一般情况下,样本集大小N都会远大于维度n,那么 N ≠ n N \neq n N̸=n时,应该怎么求解a向量,这里引出最小二乘估计的概念:
m i n ∥ x a − Y ∥ 2 = J min\left \| xa-Y \right \|^2=J minxaY2=J
对a求最小值:
∂ J ∂ a = x T ( x a − Y ) = 0 \frac{\partial J}{\partial a} = x^T(xa-Y)=0 \\ aJ=xT(xaY)=0
x T x a = x T Y x^Txa=x^TY xTxa=xTY 此时 x T x x^Tx xTx是否可逆?

a = ( x T x ) − 1 x T Y a=(x^Tx)^{-1}x^TY a=(xTx)1xTY 被称为a的伪逆矩阵
在这里插入图片描述

正则化求伪逆矩阵

N &lt; n N&lt;n N<n x T x x^Tx xTx不可逆时,需通过正则化求伪逆
因为 ∣ x T x + λ I ∣ &gt; 0 \begin{vmatrix}x^Tx+\lambda I\end{vmatrix}&gt;0 xTx+λI>0恒成立,故一定可逆
此时 λ ∥ a ∥ 2 \lambda\left \| a \right \|^2 λa2 求值的最小化及最小范数估计
在这里插入图片描述

  • 14
    点赞
  • 40
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值