数学基础(二)逆矩阵、伪逆矩阵、最小二乘解、最小范数解

举一个多元线性回归的例子:

假设x_1,x_2,...,x_N都为n维的行向量,N表示样本个数,y为实数。

则得到到,其中,x_{1n}为向量x_1中的n个值;a_1,a_2,a_3,...,a_n就是要估计的参数。

 将上式写成矩阵的形式就是

我们的目的就是要解出参数a的列向量,则通过下式即可解出a向量。

但是通常情况下样本量N并不等于每个样本的维度n,N\neq n

则求Xa-Y的最小值 

对a求偏导,导数等于0处去最小值

【置于为什么求偏导后的式子是这样的,我放到了最后说明,该结论记住即可】

移项得

那么X^TX是否可逆呢?如果可逆,就可以通过a=(X^TX)^{-1}(X^TY)求得a向量。

下面判断X^TX是否可逆,当N\neq n时,有两种情况,N>n 和 N<n。

①N>n

其中,X_{5\times 3}X^T_{3\times 5},则X^TX_{3\times 3}

 

 这个就是伪逆矩阵,当X可逆时,它就是逆矩阵。

伪逆矩阵对应的解法叫做最小二乘解。 

②N<n 

 其中,X_{3\times 5}X^T_{5\times 3},则X^TX_{5\times 5}

 

 注意:

 此时X^TX不可逆该怎么办呢?

我们就需要在后面加入一个正则项

为什么要加入正则项呢?针对N<n,样本量不足,属于过拟合现象,针对过拟合问题,我们就会对代价函数加入正则项来缓解过拟合。(加入正则项求的解叫做最小范数解

对a求偏导得到

移项:

为什么(X^TX+\lambda I)必为可逆呢?\lambda I 肯定是可逆的,故加上X^TX(半正定矩阵,上一章证明过)也是可逆的。

证明一下:

 其中a^T,a是试探向量,故a^Ta> 0,所以2式为是正定的,非半正定。

 这个公式叫做岭回归,在对角线上加入了 λ,就像山岭一样。

 对矩阵求偏导:

  

 

更多请参考:矩阵求导、几种重要的矩阵及常用的矩阵求导公式_~青萍之末~的博客-CSDN博客_矩阵求导公式大全

  • 5
    点赞
  • 44
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Billie使劲学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值