梯度下降法
梯度的定义
如果 w = w ( x , y , z ) , x = x ( t ) , y = y ( t ) , z = z ( t ) , w = w(x, y, z), x = x(t), y = y(t), z = z(t), w=w(x,y,z),x=x(t),y=y(t),z=z(t),根据链式法则:
如果设 ▽ w ▽w ▽w 是一个综合了 w w w所有偏导数的向量, d r / d t dr/dt dr/dt是 w w w变化速率的向量(速度向量),即:
这样原式就可以简写为▽w和dr/dt的点积:
▽ w ▽w ▽w就是梯度向量,简称梯度。对于函数 w w w定义域上的任意 x , y , z x, y, z x,y,z,都可以得到一个对应的梯度向量,所以也说 ▽ w ▽w ▽w是 w w w在某一点 ( x , y , x ) (x, y, x) (x,y,x)上的梯度。由定义可以看到,梯度包含了偏导和导数的信息。
梯度下降法
假设有函数
f ( x , y ) =