最优化笔记:梯度下降法

本文详细介绍了梯度的定义,解释了梯度下降法如何寻找函数的极小值,给出了梯度下降的更新公式,并探讨了步长对收敛性的影响。最后,阐述了为何沿着负梯度方向是目标函数下降最快的原因。
摘要由CSDN通过智能技术生成

梯度的定义

如果 w = w ( x , y , z ) , x = x ( t ) , y = y ( t ) , z = z ( t ) , w = w(x, y, z), x = x(t), y = y(t), z = z(t), w=w(x,y,z),x=x(t),y=y(t),z=z(t)根据链式法则:
在这里插入图片描述
如果设 ▽ w ▽w w 是一个综合了 w w w所有偏导数的向量, d r / d t dr/dt dr/dt w w w变化速率的向量(速度向量),即:
在这里插入图片描述
这样原式就可以简写为▽w和dr/dt的点积:
在这里插入图片描述
   ▽ w ▽w w就是梯度向量,简称梯度。对于函数 w w w定义域上的任意 x , y , z x, y, z x,y,z,都可以得到一个对应的梯度向量,所以也说 ▽ w ▽w w w w w在某一点 ( x , y , x ) (x, y, x) (x,y,x)上的梯度。由定义可以看到,梯度包含了偏导和导数的信息。

梯度下降法

假设有函数
f ( x , y ) =

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值