神经网络第二次

为什么要“深度学习”

全连接网络问题

全连接网络 :链接权过多 ,算的慢难收敛,同时可能进入局部极小值,也容易产生过拟合问题。

解决算的慢问题:减少权值连接,每一个节点只到上层的少数神经元,即局部连接网络。

卷积神经网络

基本概念

特征提取 

 注意,图像卷积时根据定义需要首先把核上下左右转置。此处卷积核(黄色)时对称的,可以忽视。

填充

在矩阵边界填充一些值,以增加举证的大小,通常是0或者复制边界

像素来填充

步长 

 如图步长为 2

池化

思想 :使用局部统计特征,如均值或最大。解决特征过多问题

构成 :由多个卷积层和下采样构成,后面可连接全连网络

卷积层:𝑘个滤波器

下采样层 :采用 mean或max

后面 :连着全接网络

算法

前向传播定义为:

z^{[l]}(x,y)=\sum_{u=0}^{p}\sum_{v=0}^{q}a^{[l-1]}(x+u,y+v)w^{[l],k}(u,v)\\a^{[l]}(x,y)=f\left(z^{[l]}(x,y)\right)

如果第𝑙层是卷积 +池化层,则: 

\begin{aligned}&a^{[l]}(x,y)\\&=\text{downsample}\left(\sum_{u=0}^p\sum_{v=0}^qa^{[l-1]}(x+u,y+v)w_s(u,v)\right)\end{aligned}

误差反向传播

卷积NN的BP算法:下层采样

 如果当前是卷积层,下一层为下层采样,误差如何从下采样层回传假设为 2*2核平均池化

 如果当前是下采样层,下一层为卷积层,误差如何从下采样层回传假设为 2*2核卷积

 卷积NN的BP算法:卷积层+卷积层

\begin{gathered} a^{[l]}(x_{1},y_{1})=f\left(\sum_{u=0}^{p}\sum_{v=0}^{q}a^{[l-1]}(x_{1}+u,y_{1}+v)w^{[l],k}(u,v)\right) \\ a^{[l+1]}(x_{i},y_{i})=f\left(\sum_{u=0}^{p}\sum_{v=0}^{q}a^{[l]}(x_{i}+u,y_{i}+v)w^{[l+1],k}(u,v)\right) \end{gathered}

\frac{\partial a^{[l+1]}(x_{i},y_{i})}{\partial w^{[l],k}}=\sum_{u=0}^{p}\sum_{v=0}^{q}\frac{\partial a^{[l+1]}(x_{i},y_{i})}{\partial a^{[l]}(x_{i}+u,y_{i}+v)}\cdot\frac{\partial a^{[l]}(x_{i}+u,y_{i}+v)}{\partial w^{[l],k}}

 卷积NN的BP算法:卷积层+全连接层

卷积层:

a^{[l]}(x_1,y_1)=f\left(\sum_{u=0}^p\sum_{v=0}^qa^{[l-1]}(x_1+u,y_1+v)w^{[l].k}(u,v)\right)

全连接层:

a^{[l+1]}(x_i,y_i)=f\left(\sum_{u=0}^n\sum_{v=0}^na^{[l]}(x_i+u,y_i+v)w^{[l+1],k}(u,v)\right)

因此有:

\frac{\partial a^{[l+1]}(x_{i},y_{i})}{\partial w^{[l],k}}=\sum_{u=0}^{n}\sum_{v=0}^{n}\frac{\partial a^{[l+1]}(x_{i},y_{i})}{\partial a^{[l]}(x_{i}+u,y_{i}+v)}\cdot\frac{\partial a^{[l]}(x_{i}+u,y_{i}+v)}{\partial w^{[l],k}}

声明:以上来自屈桢深老师课件

  • 5
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值