coco数据集大小分类_第八天算法实践KNN分类——二维数据集

本文介绍了K近邻(KNN)算法在二维数据集中的应用,详细讲解了KNeighborsClassifier分类器、颜色映射功能、meshgrid函数、ravel和reshape操作以及pcolormesh和scatter函数在数据可视化中的作用。通过实例展示了如何使用KNN进行分类预测,并调整坐标轴显示范围。
摘要由CSDN通过智能技术生成

k近邻法

是一种基本分类与回归方法,其基本做法是:给定测试实例,基于某种距离度量找出训练集中与其最靠近的k个实例点,然后基于这k个最近邻的信息来进行预测。

一、在二维数据集——KNN分类中,遇到的函数及其作用如下:

(1)KNeighborsClassifier,K近邻算法分类器

代码中:

KNeighborsClassifier(k)——参数k的含义是给定的邻居数,即:分别按照k值为1,3,5,8,10,15这六种情况进行最近邻分类预测

(2)ListedColormap,当希望图表元素的颜色与数据集中某个变量的值相关,颜色随着该变量值的变化而变化,以反映数据变化趋势、数据的聚集、分析者对数据的理解等信息时,就需要用到 matplotlib 的颜色映射(colormap)功能,即将数据映射到颜色。

代码中:

cmap_light = ListedColormap(['orange', 'cyan', 'cornflowerblue'])

cmap_bold = ListedColormap(['darkorange', 'c', 'darkblue'])

即:分别对画布背景,和画布上数据点定义了三个与数据集分类值相关的颜色。

(3)meshgrid,该函数用两个坐标轴上的点在平面上画网格,通常使用在数据的矢量化上。

它适用于生成网格型数据,可以接受两个一维数组生成两个二维矩阵,对应两个数组中所有的(x,y)对。

(4)ravel,该函数实现的功能是:将多维数组降为一维,并返回视图。

(5)reshape,

代码中:Z.reshape(xx.shape)里的xx.shape的作用是获得xx的各维度值,并返回一个元组。

reshape()的作用是改变数组的形状。

(6)subplot,该函数主要作用是创建一个子图,

(7)pcolormesh,该函数的作用就是绘制背景图,且其绘图速度比scatter()快。

plt.pcolormesh(xx, yy, y_predict, cmap=cmap_light)中各参数的含义如下:

  • xx,yy-图像区域内的采样点;
  • y_predict-根据采样点计算出的每个点所属的类别
  • camp-将相应的值映射到颜色

(8)scatter,该函数的作用是绘制散点图,其参数含义如下:

b108b49d107251b51f18df4070c7ffac.png

441a1a49d0438a55425d026050639f31.png

(9)xlim和ylim,这两个函数的作用是设置数值显示范围,即:

xlim(xmin, xmax)中的两个参数分别代表了x轴上的上、下限,其中:

  • xmin:x轴上显示下限
  • xmax:x轴上显示上限

ylim函数同理,分别设置了y轴上的上、下限。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值