复变函数画图cosz图像_问两个高数和复变函数问题?1:cos(z)展开成级数?2:复变奇偶函数的图形有什......

本文详细解析了复变函数的性质及其图像概念,包括幅度与相位图像,并探讨了复变函数的奇偶性。此外,还介绍了如何通过级数展开验证等式,解释了二元函数在间断点的特性及全微分的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

满意答案

口袋兔子耳朵长

2015.06.03

已帮助:3150万人

已回答:104万条

来自:阳光兔(北京)科技有限公司,是学大教育集团与奇虎360成立的合资公司,利用学大教育在内容和教育方面的资源,以及奇虎360的技术积累和互联网资源,致力于以互联网和新技术推动个性化教育的普及。

1.cos(z)=(e^(iz)+e^(-iz))/2=1+(iz)^2/(2!)+(iz)^4/(4!)+.

=1-z^2/2!+z^4/4!+.

2.复变函数没有图像.但它有幅度图像y=|f(z)|,和相位图像y=arg(f(z)).

复变函数的奇偶定义与实变函数定义是一样的,即满足f(z)=f(-z)为偶函数,满足f(z)=-f(-z)为奇函数.这两种函数的幅度函数为偶函数,相位函数为奇函数.

反函数存在的条件是f(z)为一一映射,即z1不等于z2与f(z1)不等于f(z2)相互等价时的函数f(z).

3.等式两边用级数展开,展开后是无穷项相加的形式,其中每项的形式是一个系数乘以x^m(iy)^n,该项的次数(幂)为(m+n),我们将次数为(m+n)的所有项合并.即将x^0(iy)^(n+m),x^1(iy)^(n+m-1),x^2(iy)^(n+m-2),...

...,x^(m+n-1)(iy)^1,x^(m+n)(iy)^0这些次数为(m+n)的项合并.

为此,得先算每一项的系数.对于x^m(iy)^n,它是由e^x级数展开中的

(1/m!)*x^m与e^(iy)级数展开中的(1/n!)*(iy)^m 这两项相乘得到的,

故x^m(iy)^n的系数为

(1/m!)*(1/n!)=(1/(m+n)!)C(m+n;m) (这里n,k的组合数记为C(n;k))

则等式左边的级数相乘展开中,次数为(m+n)的项加在一起等于

(1/(m+n)!)∑(k从0到r)C((m+n);k)*x^k(iy)^(m+n-k)=(1/(m+n)!)*(x+iy)!(牛顿二项式公式)

而等式右边级数展开中,次数为(m+n)的项为(1/(m+n)!)*(x+iy)!,

即左边合并次数相同的项后(多项合并后变为一项),与等式右边相同次数的项相等,

故左边=右边.

高数问题

1.二元函数在间断点处不连续(对x,y变量而言都不连续),当然不存在偏导数.

2△Z=A△X+B△Y+o(c)是全微分的定义式.

Z对X的偏导数表示X变化时Z的变化率,当然与Y无关,可将△Y等于零.

尽管X,Y可能相关(比如都是t的函数),但微分代表关于某个量的变化速率,

既然要计算Z关于X,Y的变化速率,就应将X,Y的增量△X与△Y视为无关的,因为只关心△X对△Z的影响和△Y对△Z的影响.

推广链接

00分享举报

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值