满意答案
口袋兔子耳朵长
2015.06.03
已帮助:3150万人
已回答:104万条
来自:阳光兔(北京)科技有限公司,是学大教育集团与奇虎360成立的合资公司,利用学大教育在内容和教育方面的资源,以及奇虎360的技术积累和互联网资源,致力于以互联网和新技术推动个性化教育的普及。
1.cos(z)=(e^(iz)+e^(-iz))/2=1+(iz)^2/(2!)+(iz)^4/(4!)+.
=1-z^2/2!+z^4/4!+.
2.复变函数没有图像.但它有幅度图像y=|f(z)|,和相位图像y=arg(f(z)).
复变函数的奇偶定义与实变函数定义是一样的,即满足f(z)=f(-z)为偶函数,满足f(z)=-f(-z)为奇函数.这两种函数的幅度函数为偶函数,相位函数为奇函数.
反函数存在的条件是f(z)为一一映射,即z1不等于z2与f(z1)不等于f(z2)相互等价时的函数f(z).
3.等式两边用级数展开,展开后是无穷项相加的形式,其中每项的形式是一个系数乘以x^m(iy)^n,该项的次数(幂)为(m+n),我们将次数为(m+n)的所有项合并.即将x^0(iy)^(n+m),x^1(iy)^(n+m-1),x^2(iy)^(n+m-2),...
...,x^(m+n-1)(iy)^1,x^(m+n)(iy)^0这些次数为(m+n)的项合并.
为此,得先算每一项的系数.对于x^m(iy)^n,它是由e^x级数展开中的
(1/m!)*x^m与e^(iy)级数展开中的(1/n!)*(iy)^m 这两项相乘得到的,
故x^m(iy)^n的系数为
(1/m!)*(1/n!)=(1/(m+n)!)C(m+n;m) (这里n,k的组合数记为C(n;k))
则等式左边的级数相乘展开中,次数为(m+n)的项加在一起等于
(1/(m+n)!)∑(k从0到r)C((m+n);k)*x^k(iy)^(m+n-k)=(1/(m+n)!)*(x+iy)!(牛顿二项式公式)
而等式右边级数展开中,次数为(m+n)的项为(1/(m+n)!)*(x+iy)!,
即左边合并次数相同的项后(多项合并后变为一项),与等式右边相同次数的项相等,
故左边=右边.
高数问题
1.二元函数在间断点处不连续(对x,y变量而言都不连续),当然不存在偏导数.
2△Z=A△X+B△Y+o(c)是全微分的定义式.
Z对X的偏导数表示X变化时Z的变化率,当然与Y无关,可将△Y等于零.
尽管X,Y可能相关(比如都是t的函数),但微分代表关于某个量的变化速率,
既然要计算Z关于X,Y的变化速率,就应将X,Y的增量△X与△Y视为无关的,因为只关心△X对△Z的影响和△Y对△Z的影响.
推广链接
00分享举报