一些初等函数的泰勒展开方法, 一般不采取计算泰勒系数 (4.10) 的直接法;而是常采取借用一些已知展式来计算要求展式的间接法.下面给出几个初等函数的泰勒展式,它们的形式与数学分析中大家熟知的形式是一致的.
例 4.6
函数 f ( z ) = e z f(z)=\mathrm{e}^{z} f(z)=ez 在 z z z 平面上解析, 它在 z = 0 z=0 z=0处的泰勒系数为
c n = f ( n ) ( 0 ) n ! = 1 n ! ( n = 0 , 1 , 2 , ⋯ ) , c_{n}=\cfrac{f^{(n)}(0)}{n !}=\cfrac{1}{n !} \quad(n=0,1,2, \cdots), cn=n!f(n)(0)=n!1(n=0,1,2,⋯),
于是有
e z = 1 + z + z 2 2 ! + ⋯ + z n n ! + ⋯ ( ∣ z ∣ < + ∞ ) \color{red}{\mathrm{e}^{z}=1+z+\cfrac{z^{2}}{2 !}+\cdots+\cfrac{z^{n}}{n !}+\cdots \quad(|z|<+\infty)} ez=1+z+2!z2+⋯+n!zn+⋯(∣z∣<+∞)
例 4.7
我们利用 e z \mathrm{e}^{z} ez 的上述展式求得
cos z = e i z + e − i z 2 = 1 2 ∑ n = 0 ∞ ( i z ) n n ! + 1 2 ∑ n = 0 ∞ ( − i z ) n n ! . \cos z=\cfrac{\mathrm{e}^{\mathrm{i} z}+\mathrm{e}^{-\mathrm{i} z}}{2}=\cfrac{1}{2} \sum_{n=0}^{\infty} \cfrac{(\mathrm{i} z)^{n}}{n !}+\cfrac{1}{2} \sum_{n=0}^{\infty} \cfrac{(-\mathrm{i} z)^{n}}{n !} . cosz=2eiz+e−iz=21n=0∑∞n!(iz)n+21n=0∑∞n!(−iz)n.
注意到两个级数的奇次方项互相抵消,故得
cos z = ∑ n = 0 ∞ ( − 1 ) n z 2 n ( 2 n ) ! ( ∣ z ∣ < + ∞ ) ; \color{red}{\cos z=\sum_{n=0}^{\infty} \cfrac{(-1)^{n} z^{2 n}}{(2 n) !} \quad(|z|<+\infty)} ; cosz=n=0∑∞(2n)!(−1)nz2n(∣z∣<+∞);
同理又可得
sin z = ∑ n = 0 ∞ ( − 1 ) n z 2 n + 1 ( 2 n + 1 ) ! ( ∣ z ∣ < + ∞ ) . \color{red}{\sin z=\sum_{n=0}^{\infty} \cfrac{(-1)^{n} z^{2 n+1}}{(2 n+1) !} \quad(|z|<+\infty)} . sinz=n=0∑∞(2n+1)!(−1)nz2n+1(∣z∣<+∞).
根据泰勒展式的惟一性, 上两个展式分别是 cos z \cos z cosz 及 sin z \sin z sinz 在 z z z平面上的泰勒展式.
例 4.8
多值函数 Ln ( 1 + z ) \operatorname{Ln}(1+z) Ln(1+z) 以 z = − 1 , ∞ z=-1, \infty z=−1,∞ 为支点, 将 z z z 平面沿负实轴从 -1 到 ∞ \infty ∞割破, 在这样得到的区域 G G G(特别在单位圆 ∣ z ∣ < 1 ) |z|<1) ∣z∣<1) 内, Ln ( 1 + z ) \operatorname{Ln}(1+z) Ln(1+z)可以分出无穷多个单值解析分支. 先取主值支 f 0 ( z ) = [ ln ( 1 + z ) ] 0 f_{0}(z)=[\ln (1+z)]_{0} f0(z)=[ln(1+z)]0在单位圆内展成 z z z 的幂级数. 为此先计算其泰勒系数.由于
f 0 ′ ( z ) = 1 1 + z , ⋯ , f 0 ( n ) ( z ) = ( − 1 ) n − 1 ( n − 1 ) ! ( 1 + z ) n , f_{0}^{\prime}(z)=\cfrac{1}{1+z}, \cdots, f_{0}^{(n)}(z)=(-1)^{n-1} \cfrac{(n-1) !}{(1+z)^{n}}, f0′(z)=1+z1,⋯,f0(n)(z)=(−1)n−1(1+z)n(n−1)!,
所以其泰勒系数为
c n = f 0 ( n ) ( 0 ) n ! = ( − 1 ) n − 1 n ( n = 1 , 2 , ⋯ ) . c_{n}=\cfrac{f_{0}^{(n)}(0)}{n !}=\cfrac{(-1)^{n-1}}{n} \quad(n=1,2, \cdots) . cn=n!f0(n)(0)=n(−1)n−1(n=1,2,⋯).
因为 f 0 ( z ) = [ ln ( 1 + z ) ] 0 f_{0}(z)=[\ln (1+z)]_{0} f0(z)=[ln(1+z)]0 是主值, 即在 1 + z 1+z 1+z 取正实数时, [ ln ( 1 + z ) ] 0 [\ln (1+z)]_{0} [ln(1+z)]0 取实数, 于是有 f 0 ( 0 ) = 0 f_{0}(0)=0 f0(0)=0. 最后得出
[ ln ( 1 + z ) ] 0 = z − z 2 2 + z 3 3 − ⋯ + ( − 1 ) n − 1 z n n + ⋯ ( ∣ z ∣ < 1 ) , [\ln (1+z)]_{0}=z-\cfrac{z^{2}}{2}+\cfrac{z^{3}}{3}-\cdots+(-1)^{n-1} \cfrac{z^{n}}{n}+\cdots \quad(|z|<1), [ln(1+z)]0=z−2z2+3z3−⋯+(−1)n−1nzn+⋯(∣z∣<1),
所以 Ln ( 1 + z ) \operatorname{Ln}(1+z) Ln(1+z) 的各支的展式应该是
[ ln ( 1 + z ) ] k = 2 k π i + z − z 2 2 + z 3 3 + ⋯ + ( − 1 ) n − 1 z n n + ⋯ ( ∣ z ∣ < 1 ; k = 0 , ± 1 , ± 2 , ⋯ ) . \begin{array}{c} \color{red}{
{[\ln (1+z)]_{k}=2 k \pi \mathrm{i}+z-\cfrac{z^{2}}{2}+\cfrac{z^{3}}{3}+\cdots+(-1)^{n-1} \cfrac{z^{n}}{n}+\cdots}} \\[4ex] (|z|<1 ; k=0, \pm 1, \pm 2, \cdots) . \end{array} [ln(1+z)]k=2kπi+z−2z2+3z3+⋯+(−1)n−1nzn+⋯(∣z∣<1;k=0,±1,±2,⋯).
例 4.9
按一般幂函数的定义,
( 1 + z ) a = e a Ln ( 1 + z ) ( α 为复数) (1+z)^{a}=\mathrm{e}^{a \operatorname{Ln}(1+z)} \quad(\alpha \text { 为复数) } (1+z)a=eaLn(1+z)(α 为复数)
的支点也是 − 1 , ∞ -1, \infty −1,∞, 故