e z = e x + i y = e x ( cos y + i sin y ) ( 2.11 ) \mathrm{e}^{z}=\mathrm{e}^{x+\mathrm{i} y}=\mathrm{e}^{x}(\cos y+\mathrm{i} \sin y) \quad\quad (2.11) ez=ex+iy=ex(cosy+isiny)(2.11)
定义 2.5
定义
sin z = e i z − e − i z 2 i , cos z = e i z + e − i z 2 \color{red}{\sin z=\cfrac{\mathrm{e}^{\mathrm{i} z}-\mathrm{e}^{-\mathrm{i} z}}{2 \mathrm{i}}, \quad \cos z=\cfrac{\mathrm{e}^{\mathrm{i} z}+\mathrm{e}^{-\mathrm{i} z}}{2}} sinz=2ieiz−e−iz,cosz=2eiz+e−