复变函数论2-解析函数2-初等解析函数2-复三角函数1-复数z的正/余弦函数2-6:性质6【在复数域内不能再断言│sinz│⩽1、│cosz│⩽1】

本文介绍了复数域中正弦和余弦函数的定义,并指出在复数域内不能简单地认为它们的绝对值小于等于1。通过示例展示了如何计算复数的正弦值,并证明了当sin(z+ω)=sinz时,ω必须是2kπ的整数倍。
摘要由CSDN通过智能技术生成

e z = e x + i y = e x ( cos ⁡ y + i sin ⁡ y ) ( 2.11 ) \mathrm{e}^{z}=\mathrm{e}^{x+\mathrm{i} y}=\mathrm{e}^{x}(\cos y+\mathrm{i} \sin y) \quad\quad (2.11) ez=ex+iy=ex(cosy+isiny)(2.11)

定义 2.5

定义

sin ⁡ z = e i z − e − i z 2 i , cos ⁡ z = e i z + e − i z 2 \color{red}{\sin z=\cfrac{\mathrm{e}^{\mathrm{i} z}-\mathrm{e}^{-\mathrm{i} z}}{2 \mathrm{i}}, \quad \cos z=\cfrac{\mathrm{e}^{\mathrm{i} z}+\mathrm{e}^{-\mathrm{i} z}}{2}} sinz=2ieizeiz,cosz=2eiz+e

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值