正方形里面两个扇形相交部分_双正方形模型(一)

本文探讨了正方形中两个共顶点正方形构成的图形特性,引出「手拉手」模型,即两个顶角相等的等腰三角形形成的旋转全等,并延伸到中点四边形的问题。通过倍长中线和全等证明,得出对角线垂直相等的四边形中点四边形为正方形的结论。同时,文章介绍了如何通过变换和拓展得到新的几何问题,如增加小正方形后的性质变化,以及与圆内接四边形的Brahmagupta定理的联系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

501deeb455b5b61fc1f21d997710f570.png

在正方形的题目中,有很常见的一类是和两个正方形有关的图形,如图1

91cecafbdcaa1ee51392aa8d9590881f.png
图1

在这个图形中,有很多有意思的性质,也衍生出了很多的题目.我们讲分几次一一道来.

「手拉手」模型

在学习全等的时候,我们知道有一类很重要的全等模型——旋转全等模型,俗称「手拉手」模型.说的是两个共顶点且顶角相等的等腰三角形,一定伴随着一组旋转全等,如图2

efe40d67cd1fd2b240439a0c1c91cc5c.png
图2

是两个顶角相等的等腰三角形,易证
.这是一个旋转全等,旋转角度等于两个等腰三角形的顶角角度.

关于这个模型,也有很多相关的结论,不过大部分和这次的内容关系不大,有机会我们另开文讲述.

那么,对于两个共顶点的正方形,也有类似的结论.在图1中,我们可以把它看成是两个等腰直角三角形

的「手拉手」,于是就有
,而且旋转角度为

b768da005bcca93277806c10ceae6c52.png
图3

于是,我们就得到了一个对角线垂直且相等的四边形

和中点四边形相关的问题

熟悉中点四边形的朋友马上就会想到,这样一个四边形的中点四边形一定是一个正方形,也就是下面这个图:

09ba004e89aa514ec7f20065f0afadc3.png
图4

在这个图中,中点四边形

就是一个正方形.

另一个和中点相关的问题

图1中,如果我们取

的中点
,连结
,则
.(如果取
中点,有类似的结论)

7382125d96ea05805f320e2d131fd9c3.png
图5

对于中点问题,我们知道一种常见的处理方法就是「倍长中线」,因此我们倍长

,可以证明
.注意这是一个旋转
的全等,因此
垂直且相等,所以上面的结论成立.

1ddd201bf4a749cad966e495261a6c38.png
图6

这个命题逆命题也成立,即如果

,则
的中点,且

这个命题也可以利用上图来证明,不过这个时候需要直接延长作

来证明全等.

这个时候另外一种处理方法是做垂直,利用弦图的模型来证明全等.

3ecf9c1441dedbfa71bb660f3edddc37.png
图7

图7,延长

,作
,则
,于是
,因此
是平行四边形,于是

这两个证明同时还都证明了另一个结论,就是

.由割补法知这两个三角形的面积的确是相等的.

当然,如果熟悉三角函数的话,这两个三角形的面积相等是显然的.因为

互补,而角的两边对应相等,因此面积也是相等的.

变形一

前面我们说了

是一个对角线垂直且相等的四边形,因此,这个题的可以这样来出:

图8,在四边形

中,
,且
,分别取
的中点
,分别过
的垂线交于
,则

90a8cd9488c827e7b6adeed6e316e14a.png
图8

这个图如果把

都连起来,显然有
,注意这是一个旋转
的全等,因此
都是等腰直角三角形.于是这就变成了
图5一样的图了,后面的证明和上面相同.

e8ca564b21a4274d30937c92d991ca61.png
图9

变形二

如果我们把两个正方形中间再加一个小正方形,那么结论会变成什么样子?

图10,有三个正方形

,取
中点
,则有

a989344a4d2fce3bea0b3d98c1800709.png
图10

很明显,这个图是上面图5的一个推广,如果中间的小正方形缩成一个点,那么就变成了图5

既然是推广,那么证明应该也是类似的.我们还是可以倍长

来做,不过这个时候要找的全等变得复杂了一些.

b6d34acc31f13cf966dbef058d27f384.png
图11

图11,我们倍长

,可以类似地证明

不过在证明的时候需要注意,这里面隐藏着两个「手拉手」的全等模型,在证明上面的全等的时候需要用到,如图12,有

,都是旋转
的全等.

f5cd1f23890910b51fc1fc1b39bd0989.png
图12

拓展联想

在圆的内接四边形中,有一个类似的结论:

若圆内接四边形的对角线相互垂直,则垂直于一边且过对角线交点的直线将平分对边.

这就是 Brahmagupta 定理,一般译作「婆罗摩笈多定理」,或者「布拉美古塔定理」.

图13,在圆的内接四边形

中,
,过对角线的中点
,交
于点
,则
的中点.

4eb1be45a8d241858e1dad3847a6de19.png
图13

这个的证明是比较简单的,

于是

,直接倒角就证明了.

这个定理的逆命题也成立,即如果

的中点,那么
.证明和上面类似.

总结一下,这类问题主要是和中点有关系,主要的方法是「倍长中线」和「手拉手」的全等.还有一类问题是借助于中位线来解决的,这一类题目讨论的不是

的中点(图2中),而是
的中点.这一类问题,我们放到下一篇文章中来讨论.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值