
在正方形的题目中,有很常见的一类是和两个正方形有关的图形,如图1
:

在这个图形中,有很多有意思的性质,也衍生出了很多的题目.我们讲分几次一一道来.
「手拉手」模型
在学习全等的时候,我们知道有一类很重要的全等模型——旋转全等模型,俗称「手拉手」模型.说的是两个共顶点且顶角相等的等腰三角形,一定伴随着一组旋转全等,如图2
:

关于这个模型,也有很多相关的结论,不过大部分和这次的内容关系不大,有机会我们另开文讲述.
那么,对于两个共顶点的正方形,也有类似的结论.在图1
中,我们可以把它看成是两个等腰直角三角形

于是,我们就得到了一个对角线垂直且相等的四边形
和中点四边形相关的问题
熟悉中点四边形的朋友马上就会想到,这样一个四边形的中点四边形一定是一个正方形,也就是下面这个图:

在这个图中,中点四边形
另一个和中点相关的问题
在图1
中,如果我们取

对于中点问题,我们知道一种常见的处理方法就是「倍长中线」,因此我们倍长

这个命题逆命题也成立,即如果
这个命题也可以利用上图来证明,不过这个时候需要直接延长作
这个时候另外一种处理方法是做垂直,利用弦图的模型来证明全等.

如图7
,延长
这两个证明同时还都证明了另一个结论,就是
当然,如果熟悉三角函数的话,这两个三角形的面积相等是显然的.因为
变形一
前面我们说了
如图8
,在四边形

这个图如果把
图5
一样的图了,后面的证明和上面相同.

变形二
如果我们把两个正方形中间再加一个小正方形,那么结论会变成什么样子?
如图10
,有三个正方形

很明显,这个图是上面图5
的一个推广,如果中间的小正方形缩成一个点,那么就变成了图5
.
既然是推广,那么证明应该也是类似的.我们还是可以倍长

如图11
,我们倍长
不过在证明的时候需要注意,这里面隐藏着两个「手拉手」的全等模型,在证明上面的全等的时候需要用到,如图12
,有

拓展联想
在圆的内接四边形中,有一个类似的结论:
若圆内接四边形的对角线相互垂直,则垂直于一边且过对角线交点的直线将平分对边.
这就是 Brahmagupta 定理,一般译作「婆罗摩笈多定理」,或者「布拉美古塔定理」.
如图13
,在圆的内接四边形

这个的证明是比较简单的,
于是
故
这个定理的逆命题也成立,即如果
总结一下,这类问题主要是和中点有关系,主要的方法是「倍长中线」和「手拉手」的全等.还有一类问题是借助于中位线来解决的,这一类题目讨论的不是