离散推导
Spalding(1972)提出了混合差分格式,该格式结合了中心差分格式和迎风格式的优点。小Pe数情况下( P e < 2 Pe<2 Pe<2),使用中心差分格式,它具有二阶计算精度;大Pe数情况下( P e > 2 Pe>2 Pe>2),使用迎风格式计算控制体界面对流输运量并忽略扩散作用。虽然迎风格式只有一阶精度,但可较好的反应流动的输运特征。
混合差分格整合了中心差分格式和迎风格式的计算公式,使用分段线性的计算公式来近似通过网格边界面处的通量。通过左边界单位面积通量的混合差分格式计算公式为
q w = F w [ 1 2 ( 1 + 2 P e w ) ϕ W + 1 2 ( 1 − 2 P e w ) ϕ P ] , − 2 < P e w < 2 q w = F w ϕ W , P e w ≥ 2 q w = F w ϕ P , P e w ≤ − 2 } (1) \left. \begin{aligned} q_w &= F_w \left[ \frac{1}{2} \left( 1 + \frac{2}{Pe_w} \right) \phi_W +\frac{1}{2} \left( 1 - \frac{2}{Pe_w} \right) \phi_P \right] ,&-2<Pe_w<2\\ \\ q_w &=F_w \phi_W ,&Pe_w \ge2 \\ \\ q_w &= F_w \phi_P ,&Pe_w \le -2 \end{aligned} \right \}\tag{1} qwqwqw=Fw[21(1+Pew2)ϕW+21(1−Pew2)ϕP],=FwϕW,=FwϕP,−2<Pew<2Pew≥2Pew≤−2⎭⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎫(1)
公式(1)中, P e w Pe_w Pew是当地边界面处的Peclet数,例如左边界面处定义为
P e w = F w D w = ( ρ u ) w Γ w / δ x W P (2) Pe_w=\frac{F_w}{D_w}=\frac{(\rho u)_w}{\Gamma_w/\delta x_{WP}} \tag{2} Pew=DwFw=Γw/δxWP(ρu)w(2)
q w q_w qw指的是左边界处的总通量,包括对流和扩散,公式(1)第一个式子的推导如下,
F e ϕ e − F w ϕ w = D e ( ϕ E − ϕ P ) − D w ( ϕ P − ϕ W ) ⇒ [ F e ϕ e − D e ( ϕ E − ϕ P ) ] − [ F w ϕ w − D w ( ϕ P − ϕ W ) ] = 0 ⇒ q e − q w = 0 (3) \begin{aligned} &F_e \phi_e - F_w \phi_w = D_e(\phi_E-\phi_P) - D_w(\phi_P -\phi_W) \\ \\ \Rightarrow & [F_e \phi_e - D_e(\phi_E-\phi_P)]-[F_w \phi_w-D_w(\phi_P-\phi_W)] = 0\\ \\ \Rightarrow & q_e - q_w = 0 \end{aligned} \tag{3} ⇒⇒Feϕe−Fwϕw=De(ϕE−ϕP)−Dw(ϕP−ϕW)[Feϕe−De(ϕE−ϕP)]−[Fwϕw−Dw(ϕP−ϕW)]=0qe−qw=0(3)
所以,在左边界处,当 ∣ P e ∣ < 2 |Pe|<2 ∣Pe∣<2时,对流项使用中心差分格式离散,即 ϕ w = ( ϕ W + ϕ P ) / 2 \phi_w=(\phi_W+\phi_P)/2 ϕw=(ϕW+ϕP)/2。则左边界处通量有,
q w = F w ϕ w − D w ( ϕ P − ϕ W ) = F w ( ϕ W + ϕ P 2 ) − D w ( ϕ P − ϕ W ) = ( F w 2 + D w ) ϕ W + ( F w 2 − D w ) ϕ P = F w [ 1 2 ( 1 + 2 P e w ) ϕ W + 1 2 ( 1 − 2 P e w ) ϕ P ] (4) \begin{aligned} q_w &=F_w \phi_w -D_w(\phi_P-\phi_W) \\ \\ &=F_w \left( \frac{\phi_W+\phi_P}{2} \right)-D_w(\phi_P-\phi_W) \\ \\ &=\left( \frac{F_w}{2}+D_w \right)\phi_W + \left( \frac{F_w}{2}-D_w \right)\phi_P \\ \\ &=F_w \left[\frac{1}{2} \left( 1+\frac{2}{Pe_w} \right)\phi_W +\frac{1}{2} \left( 1-\frac{2}{Pe_w} \right)\phi_P \right] \end{aligned} \tag{4} qw=Fwϕw−Dw(ϕP−ϕW)=Fw(2ϕW+ϕP)−Dw(ϕP−ϕW)=(2Fw+Dw)ϕW+(2Fw−Dw)ϕP=Fw[21(1+Pew2)ϕW+21(1−Pew2)ϕP](4)
公式(1)中的后两个式子是省略了扩散项后的通量,并且对流项使用了迎风格式
q w = F w ϕ w − D w ( ϕ P − ϕ W ) = F w ϕ w = F w ϕ W , 当 P e w ≥ 2 = F w ϕ P , 当 P e w ≤ − 2 (5) \begin{aligned} q_w &= F_w\phi_w - D_w(\phi_P- \phi_W) \\ \\ &=F_w \phi_w\\ \\ &=F_w \phi_W ,当Pe_w \ge2 \\\\ &=F_w \phi_P ,当Pe_w \le-2 \end{aligned} \tag{5} qw=Fwϕw−Dw(ϕP−ϕW)=Fwϕw=FwϕW,当Pew≥2=FwϕP,当Pew≤−2(5)
由公式(3)可知,对流扩散方程可以写成
q e − q w = 0 (6) q_e - q_w=0 \tag{6} qe−qw=0(6)
那么把混合离散格式(1)带入到离散方程(6),则
当 ∣ P e ∣ < 2 |Pe|<2 ∣Pe∣<2时,
q e − q w = F e [ 1 2 ( 1 + 2 P e e ) ϕ P + 1 2 ( 1 − 2 P e e ) ϕ E ] − F w [ 1 2 ( 1 + 2 P e w ) ϕ W + 1 2 ( 1 − 2 P e w ) ϕ P ] = 0 (7) \begin{aligned} q_e-q_w&=F_e \left[ \frac{1}{2} \left( 1+ \frac{2}{Pe_e} \right)\phi_P +\frac{1}{2} \left( 1- \frac{2}{Pe_e} \right) \phi_E \right] \\ \\ &\qquad -F_w \left[ \frac{1}{2} \left( 1+ \frac{2}{Pe_w} \right)\phi_W +\frac{1}{2} \left( 1- \frac{2}{Pe_w} \right) \phi_P \right] \\ \\ &=0 \end{aligned} \tag{7} qe−qw=Fe[21