方程离散
关于变量 ϕ \phi ϕ的输运方程,
∂ ( ρ ϕ ) ∂ t + ∇ ⋅ ( ρ ϕ u ) = ∇ ⋅ ( Γ ∇ ϕ ) + S ϕ (1) \frac{\partial (\rho \phi)}{\partial t}+ \nabla \cdot (\rho \phi \bold u) = \nabla \cdot (\Gamma \nabla \phi) + S_\phi \tag{1} ∂t∂(ρϕ)+∇⋅(ρϕu)=∇⋅(Γ∇ϕ)+Sϕ(1)
省略时间项就是稳态的对流扩散方程,
∇ ⋅ ( ρ ϕ u ) = ∇ ⋅ ( Γ ∇ ϕ ) + S ϕ (2) \nabla \cdot (\rho \phi \bold u) = \nabla \cdot (\Gamma \nabla \phi) + S_\phi \tag{2} ∇⋅(ρϕu)=∇⋅(Γ∇ϕ)+Sϕ(2)
在控制体上积分,并根据奥-高公式,有
∫ C V ∇ ⋅ ( ρ ϕ u ) d V = ∫ C V ∇ ⋅ ( Γ ∇ ϕ ) d V + ∫ C V S ϕ d V ⇒ ∫ A n ⋅ ( ρ ϕ u ) d A = ∫ A n ⋅ ( Γ ∇ ϕ ) d A + ∫ C V S ϕ d V (3) \begin{aligned} \int_{CV} \nabla \cdot (\rho \phi \bold u) dV&= \int_{CV} \nabla \cdot (\Gamma \nabla \phi) dV + \int_{CV} S_\phi dV \\ \\ \Rightarrow \int_{A} \bold n \cdot (\rho \phi \bold u) dA &= \int_{A} \bold n \cdot (\Gamma \nabla \phi) dA + \int_{CV} S_\phi dV \tag{3} \end{aligned} ∫CV∇⋅(ρϕu)dV⇒∫An⋅(ρϕu)dA=∫CV∇⋅(Γ∇ϕ)dV+∫CVSϕdV=∫An⋅(Γ∇ϕ)dA+∫CVSϕdV(3)
考虑一维稳态无源的情况,则对流扩散方程为
d d x ( ρ u ϕ ) = d d x ( Γ d ϕ d x ) (4) \frac{d}{dx} (\rho u \phi) = \frac{d}{dx} (\Gamma \frac{d \phi}{dx}) \tag{4} dxd(ρuϕ)=dxd(Γdxdϕ)(4)
流动同时也满足连续性方程
d d x ( ρ u ) = 0 (5) \frac{d}{dx} (\rho u ) = 0 \tag{5} dxd(ρu)=0(5)
对流扩散方程在一维空间上的离散与扩散方程类似,公式 ( 1 ) (1) (1)和 ( 4 ) (4) (4)的对流项和扩散项都有散度,扩散项还有梯度,那么其离散也是包括散度离散和梯度离散。一维空间的网格如下,假设网格是均匀网格,网格间距的表示如图,速度 u u u的方向是从左往右的
散度的离散即把 ρ ϕ u \rho \phi \bold u ρϕu的散度在控制体单元内的体积分转换为 ρ ϕ u \rho \phi \bold u ρϕu在边界上的面积分,
( ρ u A ϕ ) e − ( ρ u A ϕ ) w = ( Γ A d ϕ d x ) e − ( Γ A d ϕ d x ) w (6) (\rho u A \phi)_e-(\rho u A \phi)_w=\left( \Gamma A \frac{d \phi}{dx} \right)_e - \left( \Gamma A \frac{d \phi}{dx} \right)_w \tag{6} (ρuAϕ)e−(ρuAϕ)w=(ΓAdxdϕ)e−(ΓAdxdϕ)w(6)
扩散项中梯度的离散用中心差分格式,则对流扩散方程离散为
( ρ u A ϕ ) e − ( ρ u A ϕ ) w = ( Γ A ) e ϕ E − ϕ P δ x P E − ( Γ A ) w ϕ P − ϕ W δ x W P (\rho u A \phi)_e-(\rho u A \phi)_w=(\Gamma A)_e \frac{\phi_E-\phi_P}{\delta x_{PE}} - (\Gamma A)_w \frac{\phi_P-\phi_W}{\delta x_{WP}} (ρuAϕ)e−(ρuAϕ)w=(ΓA)eδxPEϕE−ϕP−(ΓA)wδxWPϕP−ϕW
为了表示简单,定义,
F = ρ u , D = Γ δ x (7) F=\rho u, D=\frac{\Gamma}{\delta x} \tag{7} F=ρu,D=δxΓ(7)
则各边界上,
F w = ( ρ u ) w F e = ( ρ u ) e D w = Γ w δ x W P D e = Γ e δ x P E (8) \begin{aligned} F_w=(\rho u)_w \qquad F_e=(\rho u)_e \\ \\ D_w=\frac{\Gamma_w}{\delta x_{WP}} \qquad D_e=\frac{\Gamma_e}{\delta x_{PE}} \tag{8} \end{aligned} Fw=(ρu)wFe=(ρu)eDw=δxWPΓwDe=δxPEΓe(8)
假设各边界面的面积相等,即 A w = A e = A A_w=A_e=A Aw=Ae=A,则离散方程为
F e ϕ e − F w ϕ w = D e ( ϕ E − ϕ P ) − D w ( ϕ P − ϕ W ) (9) F_e \phi_e - F_w \phi_w = D_e(\phi_E-\phi_P) - D_w(\phi_P-\phi_W) \tag{9} Feϕe−