有限体积法(5)——对流-扩散方程的离散

方程离散

关于变量 ϕ \phi ϕ的输运方程,
∂ ( ρ ϕ ) ∂ t + ∇ ⋅ ( ρ ϕ u ) = ∇ ⋅ ( Γ ∇ ϕ ) + S ϕ (1) \frac{\partial (\rho \phi)}{\partial t}+ \nabla \cdot (\rho \phi \bold u) = \nabla \cdot (\Gamma \nabla \phi) + S_\phi \tag{1} t(ρϕ)+(ρϕu)=(Γϕ)+Sϕ(1)

省略时间项就是稳态的对流扩散方程,
∇ ⋅ ( ρ ϕ u ) = ∇ ⋅ ( Γ ∇ ϕ ) + S ϕ (2) \nabla \cdot (\rho \phi \bold u) = \nabla \cdot (\Gamma \nabla \phi) + S_\phi \tag{2} (ρϕu)=(Γϕ)+Sϕ(2)

在控制体上积分,并根据奥-高公式,有
∫ C V ∇ ⋅ ( ρ ϕ u ) d V = ∫ C V ∇ ⋅ ( Γ ∇ ϕ ) d V + ∫ C V S ϕ d V ⇒ ∫ A n ⋅ ( ρ ϕ u ) d A = ∫ A n ⋅ ( Γ ∇ ϕ ) d A + ∫ C V S ϕ d V (3) \begin{aligned} \int_{CV} \nabla \cdot (\rho \phi \bold u) dV&= \int_{CV} \nabla \cdot (\Gamma \nabla \phi) dV + \int_{CV} S_\phi dV \\ \\ \Rightarrow \int_{A} \bold n \cdot (\rho \phi \bold u) dA &= \int_{A} \bold n \cdot (\Gamma \nabla \phi) dA + \int_{CV} S_\phi dV \tag{3} \end{aligned} CV(ρϕu)dVAn(ρϕu)dA=CV(Γϕ)dV+CVSϕdV=An(Γϕ)dA+CVSϕdV(3)
考虑一维稳态无源的情况,则对流扩散方程为
d d x ( ρ u ϕ ) = d d x ( Γ d ϕ d x ) (4) \frac{d}{dx} (\rho u \phi) = \frac{d}{dx} (\Gamma \frac{d \phi}{dx}) \tag{4} dxd(ρuϕ)=dxd(Γdxdϕ)(4)

流动同时也满足连续性方程
d d x ( ρ u ) = 0 (5) \frac{d}{dx} (\rho u ) = 0 \tag{5} dxd(ρu)=0(5)
对流扩散方程在一维空间上的离散与扩散方程类似,公式 ( 1 ) (1) (1) ( 4 ) (4) (4)的对流项和扩散项都有散度,扩散项还有梯度,那么其离散也是包括散度离散和梯度离散。一维空间的网格如下,假设网格是均匀网格,网格间距的表示如图,速度 u u u的方向是从左往右的
在这里插入图片描述
散度的离散即把 ρ ϕ u \rho \phi \bold u ρϕu的散度在控制体单元内的体积分转换为 ρ ϕ u \rho \phi \bold u ρϕu在边界上的面积分,
( ρ u A ϕ ) e − ( ρ u A ϕ ) w = ( Γ A d ϕ d x ) e − ( Γ A d ϕ d x ) w (6) (\rho u A \phi)_e-(\rho u A \phi)_w=\left( \Gamma A \frac{d \phi}{dx} \right)_e - \left( \Gamma A \frac{d \phi}{dx} \right)_w \tag{6} (ρuAϕ)e(ρuAϕ)w=(ΓAdxdϕ)e(ΓAdxdϕ)w(6)

扩散项中梯度的离散用中心差分格式,则对流扩散方程离散为
( ρ u A ϕ ) e − ( ρ u A ϕ ) w = ( Γ A ) e ϕ E − ϕ P δ x P E − ( Γ A ) w ϕ P − ϕ W δ x W P (\rho u A \phi)_e-(\rho u A \phi)_w=(\Gamma A)_e \frac{\phi_E-\phi_P}{\delta x_{PE}} - (\Gamma A)_w \frac{\phi_P-\phi_W}{\delta x_{WP}} (ρuAϕ)e(ρuAϕ)w=(ΓA)eδxPEϕEϕP(ΓA)wδxWPϕPϕW
为了表示简单,定义,
F = ρ u , D = Γ δ x (7) F=\rho u, D=\frac{\Gamma}{\delta x} \tag{7} F=ρu,D=δxΓ(7)
则各边界上,
F w = ( ρ u ) w F e = ( ρ u ) e D w = Γ w δ x W P D e = Γ e δ x P E (8) \begin{aligned} F_w=(\rho u)_w \qquad F_e=(\rho u)_e \\ \\ D_w=\frac{\Gamma_w}{\delta x_{WP}} \qquad D_e=\frac{\Gamma_e}{\delta x_{PE}} \tag{8} \end{aligned} Fw=(ρu)wFe=(ρu)eDw=δxWPΓwDe=δxPEΓe(8)
假设各边界面的面积相等,即 A w = A e = A A_w=A_e=A Aw=Ae=A,则离散方程为
F e ϕ e − F w ϕ w = D e ( ϕ E − ϕ P ) − D w ( ϕ P − ϕ W ) (9) F_e \phi_e - F_w \phi_w = D_e(\phi_E-\phi_P) - D_w(\phi_P-\phi_W) \tag{9} FeϕeFwϕw=De(ϕEϕP)Dw(ϕPϕW)(9)
同样连续性方程也可以离散为
( ϕ u A ) e − ( ϕ u A ) w = 0 ⇒ F e − F w = 0 (10) \begin{aligned} &(\phi u A)_e - (\phi u A)_w=0 \\ \\ \Rightarrow \quad &F_e -F_w = 0 \tag{10} \end{aligned} (ϕuA)e(ϕuA)w=0FeFw=0(10)

由于在数值计算中,变量的值一般是保存在节点上而不是界面上,即 ϕ W \phi_W ϕW ϕ P \phi_P ϕP ϕ E \phi_E ϕE是已知的,而边界值 ϕ e \phi_e ϕe ϕ w \phi_w ϕw是未知的,所以方程式 ( 9 ) (9) 9还不是完整的离散方程。既然扩散项中梯度离散用了中心差分格式,那对流项的边界值也不妨试试中心差分格式,在这里也就是线性插值。各边界值可以用两边的节点值来表示,
ϕ e = ϕ P + ϕ E 2 ϕ w = ϕ W + ϕ P 2 } (11) \left. \begin{aligned} \phi_e = \frac{\phi_P+\phi_E}{2} \\\\ \phi_w = \frac{\phi_W+\phi_P}{2} \end{aligned} \quad \right \} \tag{11} ϕe=2ϕP+ϕEϕw=2ϕW+ϕP(11)

将式 ( 11 ) (11) (11)代入到式 ( 9 ) (9) (9)中,有
F e 2 ( ϕ P + ϕ E ) − F w 2 ( ϕ W + ϕ P ) = D e ( ϕ E − ϕ P ) − D w ( ϕ P − ϕ W ) (12) \frac{F_e}{2} (\phi_P + \phi_E) - \frac{F_w}{2} (\phi_W + \phi_P) = D_e(\phi_E-\phi_P) - D_w(\phi_P-\phi_W) \tag{12} 2Fe(ϕP+ϕE)2Fw(ϕW+ϕP)=De(ϕEϕP)Dw(ϕPϕW)(12)
整理之,得
[ ( D w − F w 2 ) + ( D e + F e 2 ) ] ϕ P = ( D w + F w 2 ) ϕ W + ( D e − F e 2 ) ϕ E ⇒ [ ( D w + F w 2 ) + ( D e − F e 2 ) + ( F e − F w ) ] ϕ P = ( D w + F w 2 ) ϕ W + ( D e − F e 2 ) ϕ E (13) \begin{aligned} &\left [ \left( D_w-\frac{F_w}{2} \right) +\left( D_e + \frac{F_e}{2} \right) \right ] \phi_P = \left( D_w+\frac{F_w}{2} \right) \phi_W + \left( D_e-\frac{F_e}{2} \right) \phi_E \\ \\ \Rightarrow &\left [ \left( D_w+\frac{F_w}{2} \right) +\left( D_e - \frac{F_e}{2} \right) + (F_e - F_w) \right ] \phi_P = \\ \\ &\qquad \qquad \qquad \qquad \qquad \qquad \qquad \left( D_w+\frac{F_w}{2} \right) \phi_W + \left( D_e-\frac{F_e}{2} \right) \phi_E \end{aligned} \tag{13} [(Dw2Fw)+(De+2Fe)]ϕP=(Dw+2Fw)ϕW+(De2Fe)ϕE[(Dw+2Fw)+(De2Fe)+(FeFw)]ϕP=(Dw+2Fw)ϕW+(De2Fe)ϕE(13)
为了简化离散过程,这里假设边界值 F e F_e Fe F w F_w Fw D e D_e De D w D_w Dw是已知的。然后也写成扩散方程的那种形式,
a P ϕ P = a W ϕ W + a E ϕ E (14) a_P \phi_P = a_W \phi_W + a_E \phi_E \tag{14} aPϕP=aWϕW+aEϕE(14)
其中系数为,
a W = D w + F w 2 a E = D E − F e 2 a P = a W + a E + ( F e − F w ) } (15) \left. \begin{aligned} a_W = D_w + \frac{F_w}{2} \\ \\ a_E = D_E - \frac{F_e}{2} \\ \\ a_P =a_W + a_E + (F_e -F_w ) \end{aligned} \quad \right\} \tag{15} aW=Dw+2FwaE=DE2FeaP=aW+aE+(FeFw)(15)
式中的 F e − F w F_e-F_w FeFw有时候也写为 Δ F \Delta F ΔF

算例

工况 1

考虑简单的稳态一维对流扩散问题,如下图,输运量为 ϕ \phi ϕ,控制方程为式 ( 4 ) (4) (4)
边界条件为: ϕ 0 = 1 \phi_0 = 1 ϕ0=1 ϕ L = 0 \phi_L=0 ϕL=0
速度为 u = 0.1 m / s u=0.1 m/s u=0.1m/s
空间距离 L = 1.0 m L=1.0 m L=1.0m,密度 ρ = 1 k g / m 3 \rho=1 kg/m^3 ρ=1kg/m3,扩散系数 Γ = 0.1 k g / m . s \Gamma=0.1 kg/m.s Γ=0.1kg/m.s
计算输运量 ϕ \phi ϕ在流向上的分布。
在这里插入图片描述
该问题的解析解为,
ϕ − ϕ 0 ϕ L − ϕ 0 = exp ⁡ ( ρ u x / Γ ) − 1 exp ⁡ ( ρ u L / Γ ) − 1 (16) \frac{\phi-\phi_0}{\phi_L-\phi_0}=\frac{\exp(\rho u x/\Gamma)-1}{\exp(\rho uL/\Gamma)-1} \tag{16} ϕLϕ0ϕϕ0=exp(ρuL/Γ)1exp(ρux/Γ)1(16)
将计算域划分为5个均匀的网格单元,即 δ x = 0.2 m \delta x = 0.2 m δx=0.2m
在这里插入图片描述
根据前述定义, F = ρ u F=\rho u F=ρu D = Γ / δ x D=\Gamma / \delta x D=Γ/δx,则在计算域中各处有
F e = F w = F F_e = F_w=F Fe=Fw=F D e = D w = D D_e=D_w=D De=Dw=D
边界 x = 0 x=0 x=0 x = L x=L x=L分别用A和B表示,则 ϕ A = ϕ 0 = 1 , ϕ B = ϕ L = 0 \phi_A=\phi_0=1, \phi_B=\phi_L=0 ϕA=ϕ0=1,ϕB=ϕL=0
对于计算域内部的节点2,3,4来说,其离散方程就是方程式 ( 14 ) (14) (14) ( 15 ) (15) (15)。这里主要分析包含边界的节点1和节点5的方程离散。

节点1的左边界就是边界A,而运输量 ϕ A = 1 \phi_A =1 ϕA=1是已知的边界条件,则在对流项中左边界的通量 F w ϕ w = F A ϕ A F_w \phi_w=F_A \phi_A Fwϕw=FAϕA也是已知量。扩散项的梯度离散用单边差分格式,则离散方程为
F e 2 ( ϕ P + ϕ E ) − F A ϕ A = D e ( ϕ E − ϕ P ) − D A ( ϕ P − ϕ A ) (17) \frac{F_e}{2}(\phi_P + \phi_E) - F_A\phi_A=D_e(\phi_E - \phi_P) - D_A(\phi_P-\phi_A) \tag{17} 2Fe(ϕP+ϕE)FAϕA=De(ϕEϕP)DA(ϕPϕA)(17)
节点5与之类似,其离散方程为,
F B ϕ B − F w 2 ( ϕ P + ϕ W ) = D B ( ϕ B − ϕ P ) − D w ( ϕ P − ϕ W ) (18) F_B \phi_B - \frac{F_w}{2}(\phi_P+\phi_W)=D_B(\phi_B-\phi_P) -D_w (\phi_P -\phi_W) \tag{18} FBϕB2Fw(ϕP+ϕW)=DB(ϕBϕP)Dw(ϕPϕW)(18)

式中, D A = D B = 2 Γ / δ x = 2 D D_A=D_B=2\Gamma/\delta x=2D DA=DB=2Γ/δx=2D F A = F B = F F_A=F_B=F FA=FB=F
把边界条件作为源项,并将离散方程整理为
a P ϕ P = a W ϕ W + a E ϕ E + S u (19) a_P\phi_P=a_W \phi_W + a_E \phi_E + S_u \tag{19} aPϕP=aWϕW+aEϕE+Su(19)
系数,
a P = a W + a E + ( F e − F w ) − S P (20) a_P = a_W + a_E + (F_e -F_w) -S_P \tag{20} aP=aW+aE+(FeFw)SP(20)

表1 各节点系数计算公式
节点 a W a_W aW a E a_E aE S P S_P SP S u S_u Su
10 D − F / 2 D-F/2 DF/2 − ( 2 D + F ) -(2D+F) (2D+F) ( 2 D + F ) ϕ A (2D+F)\phi_A (2D+F)ϕA
2,3,4 D + F / 2 D+F/2 D+F/2 D − F / 2 D-F/2 DF/200
5 D + F / 2 D+F/2 D+F/20 − ( 2 D − F ) -(2D-F) (2DF) ( 2 D − F ) ϕ B (2D-F)\phi_B (2DF)ϕB

代入数值,则各节点的系数,

表2 工况1各节点系数值
节点 a W a_W aW a E a_E aE S u S_u Su S P S_P SP a P = a W + a E − S P a_P=a_W+a_E-S_P aP=aW+aESP
100.451.1 ϕ A \phi_A ϕA-1.11.55
20.550.45001.0
30.550.45001.0
40.550.45001.0
50.5500.9 ϕ B \phi_B ϕB-0.91.45

然后求解该线性方程组即可。数值解和解析解的对比如下图,可见数值解和解析解吻合良好。
在这里插入图片描述

工况 2

更改速度值为 u = 2.5 m / s u=2.5 m/s u=2.5m/s,则 F = ρ u = 2.5 , D = Γ / δ x = 0.1 / 0.2 = 0.5 F=\rho u =2.5, D=\Gamma/\delta x=0.1/0.2=0.5 F=ρu=2.5,D=Γ/δx=0.1/0.2=0.5。保持网格数和其他参数不变,则各节点的系数变为

表3 工况2各节点系数值
节点 a W a_W aW a E a_E aE S u S_u Su S P S_P SP a P = a W + a E − S P a_P=a_W+a_E-S_P aP=aW+aESP
10-0.753.5 ϕ A \phi_A ϕA-3.52.75
21.75-0.75001.0
31.75-0.75001.0
41.75-0.75001.0
51.750-1.5 ϕ B \phi_B ϕB1.50.25

数值解和解析解的对比如下图,可见数值解在解析解周围出现振荡(wiggles),这样的数值解是很糟糕的,该计算精度是无法接受的。因此必须采取措施提高数值解的计算精度,最直接的办法就是加密网格。
在这里插入图片描述

工况 3

速度值 u = 2.5 m / s u=2.5m/s u=2.5m/s,计算域划分为20个网格单元,则 δ x = 0.05 , F = 2.5 , D = Γ / δ x = 0.1 / 0.05 = 2.0 \delta x=0.05, F=2.5, D=\Gamma/\delta x=0.1/0.05=2.0 δx=0.05,F=2.5,D=Γ/δx=0.1/0.05=2.0。其他系数不变,则各节点的系数值为

表4 工况3各节点系数值
节点 a W a_W aW a E a_E aE S u S_u Su S P S_P SP a P = a W + a E − S P a_P=a_W+a_E-S_P aP=aW+aESP
100.756.5 ϕ A \phi_A ϕA-6.57.25
2-193.250.75004.00
103.2501.5 ϕ B \phi_B ϕB-1.54.75

数值解和解析解的对比如下图,可见加密网格后数值解和解析解吻合的就好多了。
在这里插入图片描述

总结

在推导扩散问题和对流扩散问题的有限体积法离散方程时,控制体网格界面处的变量值均采用近似计算公式。如扩散方程需要计算界面上的梯度 ( ∂ ϕ ∂ x ) w \left( \frac{\partial \phi}{\partial x}\right)_w (xϕ)w ( ∂ ϕ ∂ x ) e \left( \frac{\partial \phi}{\partial x}\right)_e (xϕ)e对流项需要计算界面上的输运量 ϕ e \phi_e ϕe ϕ w \phi_w ϕw。离散扩散项时采用的近似计算公式为
( ∂ ϕ ∂ x ) e ≈ ( Δ ϕ Δ x ) e = ϕ E − ϕ P δ x P E ( ∂ ϕ ∂ x ) w ≈ ( Δ ϕ Δ x ) w = ϕ P − ϕ W δ x W P } (21) \left. \begin{aligned} \left( \frac{\partial \phi}{\partial x} \right)_e \approx \left( \frac{\Delta \phi}{\Delta x} \right)_e = \frac{\phi_E - \phi_P}{\delta x_{PE}} \\ \\ \left( \frac{\partial \phi}{\partial x} \right)_w \approx \left( \frac{\Delta \phi}{\Delta x} \right)_w = \frac{\phi_P - \phi_W}{\delta x_{WP}} \end{aligned} \right \} \tag{21} (xϕ)e(ΔxΔϕ)e=δxPEϕEϕP(xϕ)w(ΔxΔϕ)w=δxWPϕPϕW(21)

对流项离散时采用的近似计算公式为
ϕ e ≈ ϕ E − ϕ P 2 ϕ w ≈ ϕ P − ϕ W 2 } (22) \left. \begin{aligned} \phi_e \approx \frac{\phi_E-\phi_P}{2} \\ \\ \phi_w \approx \frac{\phi_P-\phi_W}{2} \end{aligned}\right \} \tag{22} ϕe2ϕEϕPϕw2ϕPϕW(22)

其他参数如 Γ \Gamma Γ ρ \rho ρ在界面上的值也是类似计算的。这是由于场变量一般保存在节点位置,我们无法给出界面处的准确值,从而就利用相邻节点的值来近似表示。

从差分法的观点,上述用到的近似计算公式是一种中心差分格式,就是利用两侧节点的值来作线性近似表示。公式 ( 21 ) (21) (21)可以看作是过界面两侧的节点作一直线,即代表参数 ϕ \phi ϕ的线性函数,然后用该直线的导数来表示界面处的导数,而公式 ( 22 ) (22) (22)可以看作是用该线性函数的中点函数值来表示界面上的参数值。

在扩散方程的推导和算例计算过程中,采用中心差分格式来表示界面上的参数值并没导致数值解和解析解之间很大的差异,即使才采用很粗糙的网格时也没有。然而,在包含对流项的对流扩散离散方程的计算中,这种中心差分格式使得数值解在某些情况下与解析解相差很大,像工况2中出现了数值解的强烈振荡。像上面的算例,虽然在加密网格后工况2中的振荡现象消失了,数值解和解析解也吻合很好了。但在实际应用中,网格是不能无限加密的,或者说网格的加密会使计算成本急剧地增加,这种情况下,我们就不得不使用较粗糙的网格进行计算。

为了在较粗糙的网格上得到可以足够精确的数值解,我们需要深入的分析方程中的离散格式,这涉及到离散格式的一些重要特性,后面继续讨论。

参考资料

Versteeg H K , Malalasekera W . An introduction to computational fluid dynamics : the finite volume method = 计算流体动力学导论[M]. 世界图书出版公司, 2010.

计算程序

import numpy as np 
import matplotlib.pyplot as plt
import math

#== parameters ===
nx = 20  # 网格单元数
nndoes = nx + 2 # 节点数,含边界

L = 1.0 # 长度,m
gamma = 0.1  #扩散系数 , kg/m.s
phi_a = 1 # 边界A的温度值 
phi_b = 0 # 边界B的温度值 
rho = 1.0 # 密度, kg/m^3
u = 2.5 # 速度,m/s # 0.1 , 2.5
# =========================


#==  x grid ==
dx = L/nx  # 网格间距
print('dx = ',dx)
x = np.zeros(nndoes)  # x网格
x[1:nndoes-1] = np.linspace(dx/2, L-dx/2, nx) # 以边界A为原点创建网格点的坐标值
x[-1] = x[-2] + dx/2 #边界B的坐标值
print('x grid = ', x, '\n')

#==  solution array ==
phi = np.zeros(nndoes)  # 解向量
phi[0] = phi_a # 边界值
phi[-1] = phi_b

DD = gamma / dx  # D
FF = rho * u     # F
Pe = rho * u * dx / gamma      # Peclet number
#== matrix ==
A = np.zeros((nx, nx)) 
b = np.zeros(nx)

#### 内部网格节点  #########
su = 0.0
sp = 0.0
for i in range(1, nx-1):    
    A[i][i-1] = -(DD + FF/2)
    A[i][i+1] = -(DD - FF/2)
    A[i][i] = -(A[i][i-1] + A[i][i+1]) - sp
    b[i] = su

# for boundary A
i = 0  
A[i][i+1] = -(DD - FF/2)
su = (2*DD + FF) * phi_a
sp = -(2*DD + FF)
A[i][i] = -A[i][i+1] - sp
b[i] = su

# for boundary B
i = nx-1  
A[i][i-1] = -(DD + FF/2)
su = (2*DD - FF) * phi_b
sp = -(2*DD - FF)
A[i][i] = -A[i][i-1] - sp
b[i] = su

print('A = \n', A, '\n')
print('b = \n', np.matrix(b).T ,'\n')

phi_temp = np.linalg.solve(A, b)
print('solution = \n', np.matrix(phi_temp).T, '\n')
phi[1:nndoes-1] = phi_temp

#===== for exact solution ======
xx = np.linspace(0, L, 50, endpoint=True)
exact_solution = np.zeros(50)
for i in range(50):
    exact_solution[i] = (math.exp(rho*u*xx[i] / gamma) -1) / (math.exp(rho*u*L / gamma) -1) * (phi_b - phi_a) + phi_a
    
#==== for showing result =======
plt.xlabel('Distance (m)')
plt.ylabel('Phi (C)')
plt.plot(x,phi ,'bs--', label='Numerical (CD)')
plt.plot(xx,exact_solution,'k', label='Exact')
title = 'u= '+str(u)+',  Pe= %.3f'% Pe
plt.title(title.rstrip('0'))
plt.legend()
plt.show()
  • 14
    点赞
  • 74
    收藏
    觉得还不错? 一键收藏
  • 8
    评论
### 回答1: 有限体积(Finite Volume Method)是求解对流扩散方程(Convection-Diffusion Equation)的一种常用数值方对流扩散方程描述了物质的传输过程,它在工程和科学领域有广泛应用。 在使用有限体积求解该方程时,首先将求解域划分为离散的单元,每个单元内的物理量用平均值来表示。然后,根据质量和能量守恒原理,将对流扩散方程离散化为单元间的代数方程。 对于每个单元,通过对流项和扩散项的计算,得到其对流通量和扩散通量。对于对流项的计算,可以使用一阶迎风格式或高阶格式,根据具体情况选择算。对于扩散项的计算,可以使用中心差分格式或其他适合的格式。然后,根据物质守恒原理,将通量的变化量考虑到每个单元的源项中。 在求解过程中,需要选择合适的时间步长和空间步长,以保证数值解的稳定性和精度。在迭代过程中,可以使用显式或隐式的时间离散格式,如显式欧拉或隐式改进的欧拉。对于隐式格式,需要使用迭代方求解非线性方程组。 最后,通过迭代求解所有单元的代数方程,得到整个求解域内物理量的数值解。使用Matlab这样的编程软件,可以方便地实现对流扩散方程有限体积的数值解。Matlab提供了丰富的数值计算和矩阵运算函数,可以有效地处理大规模的离散化问题。 综上所述,对流扩散方程有限体积是一种广泛应用于数学建模和工程计算中的数值方,它通过将求解域离散化为单元,将对流扩散方程离散化为代数方程,并使用适当的格式和迭代方进行求解。使用Matlab等编程软件可以方便地实现该方并得到求解结果。 ### 回答2: 对流扩散方程是描述物质运动和扩散方程,其一种常用的数值解有限体积有限体积是一种基于体积平均原理的离散,通过将求解域进行网格剖分,将连续方程离散离散点上的代数方程,从而得到问题的数值解。 在使用MATLAB求解对流扩散方程时,可以按照以下步骤进行: 1. 确定求解域及网格大小和网格节点位置:根据问题的几何形状和边界条件,确定求解区域,并选择合适的网格大小和节点位置。 2. 离散方程:将对流扩散方程离散化为有限体积格式的代数方程,通过体积平均原理得到离散方程。 3. 设定初值和边界条件:根据问题的实际情况,设定问题的初始解以及边界条件。 4. 求解离散方程:利用MATLAB的矩阵运算功能,将离散方程转化为代数方程组,并利用线性代数方求解方程组,得到数值解。 5. 可视化结果:通过MATLAB的绘图功能,将数值解以图形的形式展示出来,可更直观地观察到问题的数值解的变化。 需要注意的是,对流扩散方程的数值解在稳定性和收敛性方面需要进行分析和讨论,以确保所得到的数值解是可靠和准确的。同时,在选择网格大小和时间步长等参数时,应该进行合理的选取,以保证数值解的精度和计算效率的平衡。 总之,通过有限体积结合MATLAB的求解能力,可以对对流扩散方程进行数值求解,得到问题的数值解,并通过可视化结果进行分析和展示。这为解决实际问题和理论研究提供了有力的工具和方。 ### 回答3: 对流扩散方程是一种常见的描述流体或物质传输的数学模型,在工程和科学领域中具有广泛的应用。有限体积是一种常用的数值解,用于求解偏微分方程。下面我来介绍一下如何使用MATLAB实现对流扩散方程有限体积。 首先,我们可以将对流扩散方程离散化为空间和时间的网格。假设我们有一个一维情况下的对流扩散方程,可以将其离散化为多个空间单元。然后,我们通过在每个空间单元上进行求解,逐步推进时间来近似求解整个方程。 在MATLAB中,我们可以首先定义一些必要的参数,如空间网格尺寸、时间步长、扩散系数和对流速度等。然后,我们可以通过创建一个空间网格矩阵来离散化空间,并初始化初始条件。接下来,我们可以使用循环来迭代求解方程。 对于每个时间步,我们可以使用有限体积的基本原理,通过近似计算每个空间单元内的质量或物质的流入和流出量。具体来说,我们可以根据质量守恒和扩散项和对流项的定义,得到差分方程离散形式。然后,我们可以使用这些差分方程来更新每个空间单元内的物质量,并在整个网格上循环迭代。 最后,我们可以通过绘制网格上的物质分布随时间的变化,来对方程的解进行可视化和分析。可以使用MATLAB的绘图函数来实现。 总结起来,对流扩散方程有限体积MATLAB的实现包括离散方程、循环求解差分方程、更新空间单元内的物质量以及绘制解的可视化等步骤。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值