利用队列广度优先(BFS)实现拓扑排序
class Solution {
public:
vector<int> findOrder(int numCourses, vector<vector<int>>& prerequisites) {
//构建邻接表,存储有向图
vector<vector<int>> graph(numCourses, vector<int>(0));
//入度
vector<int> in(numCourses, 0);
vector<int> res;
//初始化邻接表
for (auto &a : prerequisites) {
graph[a[1]].push_back(a[0]);
++in[a[0]];
}
queue<int> que;
//将入度为0的结点存入队列中
for (int i = 0; i < numCourses; ++i) {
if (in[i] == 0) que.push(i);
}
while (!que.empty()) {
int t = que.front();
que.pop();
res.push_back(t);
for (auto &a : graph[t]) {
--in[a];
if (in[a] == 0) que.push(a);
}
}
//如果存在环,则res尺寸小于numCourse
if (res.size() != numCourses) res.clear();
return res;
}
};
利用深度优先(DFS)实现拓扑排序
class Solution {
private:
// 存储有向图
vector<vector<int>> edges;
// 标记每个节点的状态:0=未搜索,1=搜索中,2=已完成
vector<int> visited;
// 用数组来模拟栈,下标 0 为栈底,n-1 为栈顶
vector<int> result;
// 判断有向图中是否有环
bool invalid;
public:
void dfs(int u) {
// 将节点标记为「搜索中」
visited[u] = 1;
// 搜索其相邻节点
// 只要发现有环,立刻停止搜索
for (int v: edges[u]) {
// 如果「未搜索」那么搜索相邻节点
if (visited[v] == 0) {
dfs(v);
if (invalid) {
return;
}
}
// 如果「搜索中」说明找到了环
else if (visited[v] == 1) {
invalid = true;
return;
}
}
//此时搜索的结点的相邻节点都搜过了。。
// 将节点标记为「已完成」
visited[u] = 2;
// 将节点入栈
result.push_back(u);
}
vector<int> findOrder(int numCourses, vector<vector<int>>& prerequisites) {
edges.resize(numCourses);
visited.resize(numCourses);
for (const auto& info: prerequisites) {
edges[info[1]].push_back(info[0]);
}
// 每次挑选一个「未搜索」的节点,开始进行深度优先搜索
for (int i = 0; i < numCourses && !invalid; ++i) {
if (!visited[i]) {
dfs(i);
}
}
if (invalid) {
return {};
}
// 如果没有环,那么就有拓扑排序
// 注意下标 0 为栈底,因此需要将数组反序输出
reverse(result.begin(), result.end());
return result;
}
};