探索AI围棋:从理论到实践的全面指南

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:AI围棋结合了人工智能与传统围棋艺术,尤其以AlphaGo为代表,在竞技与理论研究上都取得了显著成就。深度学习与蒙特卡洛树搜索等算法让AI围棋得以通过自我学习不断提升棋艺。开源项目如Leela Zero、用户界面友好的分析软件Sabaki以及围棋复盘伴侣Goreviewpartner,都为围棋爱好者和研究者提供了深入探索AI在围棋领域应用的工具。本文档集合了包括安装指南、软件使用说明及各种围棋AI相关资源的链接,旨在为围棋爱好者提供一个完整的AI围棋学习平台。 AI围棋

1. AI围棋的定义与重要性

人工智能(AI)围棋是在计算机科学与围棋艺术完美结合的产物。围棋,这一古老而复杂的游戏,因其对策略深度和计算复杂性的高要求,成为AI研究领域中的终极挑战。AI围棋不仅仅改变了传统游戏规则,更重要的是,它代表了人工智能技术的一次重大飞跃,尤其是深度学习和蒙特卡洛树搜索(MCTS)的融合,推动了智能决策算法的发展。

AI围棋的重要性在于其对AI研究的多方面推动。通过AI围棋,我们可以更好地理解计算机如何处理复杂决策过程,如何在海量可能性中找出最优策略。此外,AI围棋的成功也启示了其他领域,如自然语言处理、机器人技术和自动化的医疗诊断,体现了AI技术在提高人类生活质量方面的巨大潜能。

通过深入探讨AI围棋的定义、重要性及其带来的技术变革,本文旨在为读者提供一个全面了解这一跨时代技术的窗口,揭示其在当今社会的深远影响。接下来的章节将更深入地分析AI围棋背后的科学原理以及影响其性能的关键因素。

2. 深度学习与蒙特卡洛树搜索算法在围棋AI中的应用

深度学习和蒙特卡洛树搜索算法(MCTS)是当今围棋AI领域的核心技术。这一章节将详细介绍这两个算法的基础知识、在围棋AI中的应用,以及它们的结合如何推动了围棋AI的进化。

2.1 深度学习基础

2.1.1 神经网络的结构和工作原理

神经网络是深度学习中最核心的组成部分,其结构灵感来源于人脑中神经元的网络结构。一个典型的神经网络由输入层、隐藏层和输出层构成。每一层包含多个神经元,这些神经元通过加权的边连接相邻层的神经元。通过这种方式,信息能够在网络中逐层传播。

每个神经元都通过一个激活函数来处理输入信息,常用的激活函数包括Sigmoid、ReLU等。深度学习的核心在于通过大量数据训练神经网络,自动调整权重,从而使得网络能够对新数据进行准确预测或分类。

2.1.2 深度学习在围棋中的应用实例

围棋由于其复杂性和巨大的搜索空间,对传统算法来说是一项挑战。深度学习为围棋AI提供了前所未有的能力。以AlphaGo为例,它利用深度神经网络来评估棋局,并通过深度强化学习技术进行自我对弈学习。这使得AI能够在没有人类经验输入的情况下,自己发现和优化策略。

2.2 蒙特卡洛树搜索算法解析

2.2.1 MCTS算法原理及优势

蒙特卡洛树搜索(MCTS)是一种随机搜索算法,它通过随机模拟来探索搜索空间,并利用统计信息进行决策。MCTS的四个主要步骤包括:选择(Selection)、扩展(Expansion)、模拟(Simulation)和回溯(Backpropagation)。

  • 选择 :从根节点开始,根据特定的策略(如UCB1)选择子节点,直至到达一个尚未完全展开的节点。
  • 扩展 :在游戏树中添加一个或多个新的子节点。
  • 模拟 :从新节点进行随机或启发式的游戏直到游戏结束,得到胜率。
  • 回溯 :将模拟得到的胜率回溯到游戏树的所有父节点中。

MCTS的优势在于它能够通过探索和利用的平衡,在巨大的搜索空间中找到较好的行动策略,而且不依赖于领域知识。

2.2.2 MCTS在围棋AI中的实际应用

MCTS在围棋AI中的应用通过将它与深度学习结合来实现。例如AlphaGo使用深度神经网络来指导MCTS的模拟过程,使得模拟不再是完全随机,而是有方向性的探索。这种结合方式不仅提高了搜索的效率,还增强了搜索的准确性。

2.3 深度学习与MCTS的结合

2.3.1 AlphaGo的成功案例分析

AlphaGo是由DeepMind开发的一款震惊世界的围棋AI。它的成功在于将深度学习和MCTS巧妙地结合在一起。在训练过程中,AlphaGo使用深度神经网络进行自我对弈,并利用这些对弈数据来训练另一个神经网络进行策略预测和评估。这一过程不仅提升了AI对围棋的理解能力,也极大地提高了其决策能力。

2.3.2 算法融合对围棋AI性能的影响

深度学习和MCTS的融合使得围棋AI的性能得到了飞速提升。深度学习赋予AI识别复杂模式的能力,而MCTS提供了一个有效的决策框架。这种融合不仅在AlphaGo上取得了成功,也为后续围棋AI的发展奠定了基础。通过不断地优化这两种算法,围棋AI在对弈水平上已经超越了人类顶尖棋手,这为人工智能在其他领域的发展提供了宝贵的经验和启示。

3. Leela Zero:开源围棋AI项目,基于强化学习

Leela Zero是一个开源围棋AI项目,它基于强化学习和蒙特卡洛树搜索算法。它代表了开源社区在AI围棋领域的最新进展,并且在技术上也与AlphaGo Zero有着紧密的联系。Leela Zero项目不仅仅是一个技术的展示,它还体现了开源精神和全球研究者共同协作的力量。

3.1 Leela Zero项目概述

3.1.1 项目的起源和发展

Leela Zero项目由比利时开发者Jean-Marc Alliot在2017年发起,该项目灵感来源于DeepMind的AlphaGo Zero。在DeepMind发表了关于AlphaGo Zero的研究论文后,Jean-Marc Alliot和其他一些开发者决定将这个项目开源化,以便让全世界的研究者都能够访问和改进这个系统。

Leela Zero项目使用了一个与AlphaGo Zero相似的神经网络和强化学习算法,但是没有使用任何人类围棋游戏的数据。通过自我对弈学习,Leela Zero逐渐增强了自己的围棋能力。这使得项目不仅能够复制人类的围棋知识,还能够发现人类可能从未发现的策略和走法。

3.1.2 Leela Zero的技术架构

Leela Zero的架构建立在几个关键的技术组件之上:神经网络、自我对弈引擎和训练框架。神经网络由若干层卷积层构成,用于评估围棋棋盘状态。自我对弈引擎则负责进行游戏,并收集数据用于训练神经网络。而训练框架,则是整个学习过程的核心,它使用了蒙特卡洛树搜索算法(MCTS)来提升网络的准确度。

Leela Zero项目的代码完全开源,可以在GitHub上获取,该平台允许全球的研究者贡献代码,提出改进意见,共享训练结果。通过这种方式,Leela Zero逐步演变为一个强大的开源围棋AI。

3.2 Leela Zero的强化学习机制

3.2.1 强化学习的基本概念

强化学习是机器学习中的一种方法,它关注如何使智能体(agent)在环境中采取行动,以最大化某种累积奖励。在围棋AI的背景下,智能体的目标是赢得比赛,其奖励是获胜所带来的正面结果,负奖励则是失败。强化学习的策略包括了探索(尝试新的动作)和利用(使用已知的最佳策略)的平衡。

3.2.2 Leela Zero中的强化学习应用

在Leela Zero项目中,强化学习被用来训练神经网络,使其能够学习到如何在围棋游戏中做出最佳决策。神经网络会评价棋盘上的每一个可能的落子点,并选择评分最高的动作来执行。通过大量自我对弈,神经网络逐渐学习到哪些落子是好的,哪些是坏的。

Leela Zero使用了“奖励剪枝”策略,来加速神经网络的学习过程。该策略基于一个假设,即对弈过程中只有一步有明显的错误时,才会导致输掉比赛。因此,当一方明显领先时,它会选择性地剪掉那些可能导致失败的落子动作,减少不必要的计算。

3.3 Leela Zero的实战与评估

3.3.1 Leela Zero与人类顶尖棋手的对弈

自从Leela Zero项目发布以来,它在与人类顶尖棋手的对弈中取得了显著的成绩。在多次的测试中,Leela Zero能够在不借助任何预先人类棋谱的情况下,与专业棋手进行高水平的对弈。在与人类的对弈中,Leela Zero展现出了惊人的适应能力和创新策略,这些策略在人类棋手中是前所未见的。

3.3.2 Leela Zero在国际围棋赛事中的表现

在国际围棋赛事中,Leela Zero通过多次自我对弈和版本更新,其能力不断提升。在一些非官方的围棋赛事中,Leela Zero已经可以与职业棋手一争高下,并取得了一些胜利。这一成就表明,即使是完全基于自我学习的AI,也能够达到甚至超过人类的专业水平,这是AI发展史上的一个重要里程碑。

在Leela Zero的最新版本中,它继续在算法优化和硬件性能提升上进行探索,以期在更多的围棋AI比赛中取得更好的成绩。这一过程不仅对围棋这项运动产生了重大影响,也对强化学习以及深度学习在其他领域的应用提供了宝贵的经验。

下一章节中,我们将探讨围棋AI分析软件与引擎的深度探索,为读者提供更多实用的工具和方法。

4. 围棋AI分析软件与引擎的深度探索

4.1 Sabaki:用户友好的围棋分析软件

围棋作为一种古老而复杂的棋类游戏,对于棋手来说,每一次对弈后进行的复盘分析至关重要。棋手们通常需要利用分析软件来深入理解棋局的每一个变化和决策背后的逻辑。Sabaki正是应运而生,一个免费开源且功能强大的围棋分析工具,它为围棋爱好者和专业人士提供了丰富的分析功能。

4.1.1 Sabaki软件功能介绍

Sabaki的设计旨在提供一种全新的围棋分析体验。它包括但不限于以下主要功能:

  • 棋盘编辑器 : 用户可以在棋盘上自由地放置黑白棋子,模拟不同局势,或复盘历史棋局。
  • 变化分支管理 : 对于同一个局面,Sabaki可以记录不同的变化分支,帮助用户比较不同的下法和可能的结果。
  • AI助手 : 软件内置了多种AI引擎,如Pachi、Elohistorian等,提供不同水平的对局和分析。
  • 图形用户界面(GUI) : Sabaki提供了友好的用户操作界面,通过简洁的布局和直观的操作,极大地简化了对局和分析的过程。
  • 导入/导出支持 : 可以导入SGF、CSV等格式的文件,并导出分析结果,方便与他人分享或备份。
  • 引擎配置与切换 : 用户可以根据需要配置不同的围棋AI引擎,并在它们之间进行快速切换。

4.1.2 Sabaki的用户界面和操作技巧

在使用Sabaki时,熟悉其用户界面对于提升分析效率至关重要。用户界面分为多个区域,如下所示:

  • 主棋盘区 : 显示当前棋局,用户可以在此区域进行下棋和分析操作。
  • 侧边栏 : 显示当前棋局的信息,比如手数、当前黑方和白方的得分以及所选变招的详细信息。
  • 状态栏 : 显示当前棋局的状态,例如当前轮到哪一方下棋。
  • 控制按钮 : 用于控制AI助手的启动、停止,以及棋局的重置、悔棋等操作。

一个关键操作技巧是利用Sabaki的变招功能。在棋盘上选择一个子,然后点击右键可以生成一个新的变化分支。这对于分析不同变化的走向非常有帮助。另一个技巧是通过“选项”菜单,可以对AI引擎进行设置,比如设置AI的思考深度、棋风等,使得分析结果更符合用户的预期。

4.2 MultiGo:围棋对弈和分析软件

MultiGo是另一款围棋软件,它在设计上强调对弈功能,但也提供了棋局分析工具,适合希望进行在线对弈同时又能进行深入棋局分析的用户。

4.2.1 MultiGo软件特色和功能

MultiGo提供了如下特色和功能:

  • 网络对弈功能 : 用户可以通过互联网与全球范围内的对手进行对弈,增进棋艺。
  • 在线棋谱库 : 提供丰富的在线棋谱,方便用户下载和研究。
  • 分析工具 : 包括打谱、复盘以及棋局评价等功能,可以辅助棋手提高水平。
  • 本地棋谱导入 : 可以导入本地文件,分析历史棋谱或复盘自己的对局。
  • AI引擎 : 集成了诸如Leela Zero、Pachi等先进的AI引擎,提供高质量的对弈和分析。

4.2.2 MultiGo的实战应用案例

实战应用方面,MultiGo展示出强大的实战支持能力。用户可以记录每一手棋,分析自己或对手的每一个决策。一个实用的实战应用案例是,在网络对弈中,利用AI引擎作为参考,实时分析对局情况,帮助用户在关键时刻做出最优决策。

4.3 Goreviewpartner:围棋复盘伴侣软件

对于希望专注于分析和复盘的用户,Goreviewpartner软件可以作为一个有效的辅助工具。

4.3.1 Goreviewpartner的主要功能

Goreviewpartner的主要功能如下:

  • 复盘分析 : 用户可以输入或导入历史棋谱,软件自动进行复盘分析。
  • 标注和评论 : 在复盘时,用户可以标注关键棋点并添加文字评论。
  • 数据统计 : 提供多种统计数据,包括双方胜率、落子频率等。
  • 导出功能 : 分析结果可以导出为文档或图片,方便用于教学和分享。

4.3.2 Goreviewpartner在复盘中的应用

在实际应用中,Goreviewpartner通过其强大的复盘分析功能,帮助用户快速识别棋局中的关键点。例如,在一个复盘过程中,可以详细分析某一手棋的利弊,或是在棋局某个阶段双方的胜率变化,从而深入理解实战中的各种决策。

4.4 Pachi和Lizzie:老牌围棋引擎与GUI的完美结合

Pachi和Lizzie是另外两个围棋领域的老牌玩家。它们各自独立提供了围棋AI引擎和图形界面,它们之间的结合使用为围棋AI应用提供了更丰富的可能性。

4.4.1 Pachi引擎的特点和能力

Pachi是一款受到国际认可的围棋AI引擎,具备以下特点:

  • 开源项目 : 作为一个开源项目,Pachi能够获得来自全球程序员的优化和贡献。
  • 高性能 : Pachi拥有强大的计算能力,支持快速对弈和深入分析。
  • 多平台支持 : Pachi能够在多种操作系统上运行,包括Windows、Linux和MacOS。

4.4.2 Lizzie如何支持多种围棋引擎

Lizzie是一个图形用户界面,专门用于支持Pachi等围棋AI引擎。它具备以下优势:

  • 多引擎支持 : 用户可以在Lizzie中切换不同的围棋AI引擎,包括Pachi。
  • 实时分析 : Lizzie提供了实时的棋局分析,用户可以观看AI的决策过程。
  • 可视化的评估 : Lizzie能够显示棋局评估的热图,帮助用户理解棋局形势。
  • 便利的操作 : Lizzie简化了与围棋AI引擎交互的过程,提供一键分析等功能。

通过Lizzie,用户可以轻松地启动Pachi引擎进行对弈或复盘,利用图形界面直观地查看和理解AI的决策逻辑。Lizzie还支持对Pachi进行详细设置,允许用户根据需要调整AI的思考深度和风格。

以上对于围棋AI分析软件和引擎的介绍,为棋手提供了多样化的选择。从基础分析到复杂决策的AI辅助,每款软件都提供了独特的功能和操作体验。通过熟练使用这些工具,棋手可以更深刻地理解围棋策略,提升自己的棋艺水平。

5. 围棋AI软件的安装指南与资源下载链接

围棋AI软件,如Leela Zero、Sabaki、MultiGo、Goreviewpartner、Pachi和Lizzie等,为围棋爱好者和研究者提供了强有力的工具。本章节将详细指导你如何安装这些软件,并提供一些高级使用技巧和资源下载链接,帮助你充分利用这些工具的优势。

5.1 Leela Zero的安装与配置

Leela Zero是一个开源围棋AI项目,基于强化学习技术,可以用来与人类棋手对弈或进行自我对弈。

5.1.1 安装前的准备工作

在安装Leela Zero之前,需要确保你的计算机安装了最新版本的Python(推荐Python 3.6或以上版本),以及具备GPU计算能力的图形卡。因为Leela Zero在训练过程中使用GPU来加速计算。此外,还需要安装CUDA和cuDNN库,这两个库提供了GPU计算的核心支持。可以通过访问NVIDIA官方网站下载对应版本的CUDA和cuDNN。

5.1.2 Leela Zero的安装步骤和调试

以下是Leela Zero的安装步骤:

  1. 首先,需要克隆Leela Zero的GitHub仓库到本地:
git clone https://github.com/leela-zero/leela-zero.git
  1. 进入项目目录:
cd leela-zero
  1. 在项目根目录下执行安装Python依赖命令:
pip install -r requirements.txt
  1. 运行Leela Zero,开始默认参数的训练:
./leela-zero -t

运行之后,你可以通过访问 http://localhost:6060 来监控训练进程和检查训练状态。

请注意,通常情况下,我们需要配置网络模型文件和训练参数,对于高级用户,可以通过修改 config.json 文件来自定义模型和训练参数。详细配置参数说明可以在Leela Zero的官方文档中找到。

5.2 Sabaki和MultiGo的安装指南

Sabaki和MultiGo是围棋分析软件,为棋局的分析和研究提供了方便的界面和功能。

5.2.1 Sabaki与MultiGo的下载与安装

Sabaki的安装步骤如下:

  1. 访问Sabaki的官方网站或者GitHub页面,下载对应操作系统版本的安装包。

  2. 如果是Windows系统,直接双击安装程序并按照指示完成安装。

  3. 对于Linux和Mac系统,可以通过命令行安装:

sudo dpkg -i sabaki_*.deb # for Debian/Ubuntu
sudo yum install sabaki*.rpm # for RedHat/CentOS

安装完成后,启动Sabaki并进行基础设置和优化,例如设置界面布局、调整棋盘大小和颜色等。

MultiGo的安装和使用与Sabaki类似,下载对应平台的安装包并执行安装。它的特色在于支持多种围棋引擎,可以在分析中切换不同的AI引擎来获得不同的视角。

5.2.2 安装后的基础设置和优化

安装完毕后,我们需要进行一些基础设置:

  • 打开软件,找到设置选项。
  • 修改界面语言、主题和布局,以满足个人喜好。
  • 设置AI引擎的路径,如果你使用的是非标准安装路径的引擎,这里需要指定引擎的绝对路径。
  • 进行性能优化,如开启硬件加速或调整内存分配等。

5.3 Goreviewpartner、Pachi和Lizzie的安装流程

Goreviewpartner、Pachi和Lizzie是围棋复盘和分析的强大工具,下面详细介绍它们的安装流程。

5.3.1 Goreviewpartner的安装细节

Goreviewpartner的安装与前面提到的软件略有不同,它通常以Python包的形式进行安装。通过Python的包管理工具pip,可以较为简单地完成安装:

pip install Goreviewpartner

完成安装后,Goreviewpartner可以作为一个Python库使用,也可以根据需要将其集成到其他软件中。

5.3.2 Pachi和Lizzie的安装与配置

Pachi和Lizzie的安装步骤如下:

  1. 首先,需要克隆Pachi和Lizzie的GitHub仓库到本地:
git clone https://github.com/sanderland/pachi.git
git clone https://github.com/sanderland/lizzie.git
  1. 进入Pachi目录,并编译安装:
cd pachi
make
  1. 编译安装Lizzie,需要先设置Lizzie的参数,指定Pachi的路径:
cd ../lizzie
make

安装完成后,运行Lizzie,一般情况下它会自动检测到Pachi的位置,并开始工作。

5.4 高级使用技巧与资源分享

5.4.1 进阶使用技巧

进阶使用技巧包括:

  • 自定义配置文件 :对于Pachi和Lizzie,可以通过编辑配置文件来调整AI引擎的参数,如搜索深度、随机性、时间管理等。
  • 网络训练 :Leela Zero支持远程训练,你可以通过网络连接到Leela Zero服务器进行训练,这种方式可以在分散计算资源的同时提升训练效果。
  • 棋谱数据库 :Sabaki和MultiGo支持导入棋谱数据库,这样你可以分析历史上的棋局,学习不同棋手的风格和策略。

5.4.2 相关资源的下载链接和使用说明

以上链接中都包含有详尽的软件使用说明和资源下载。另外,相关的社区论坛和聊天室也是获取帮助和分享经验的好去处。希望这些资源能帮助你更好地运用围棋AI软件,提升你的围棋技能。

至此,本章已经为安装和使用围棋AI软件提供了全面的指南,希望这些信息能帮助你顺畅地探索围棋AI的精彩世界。

6. 围棋AI的未来发展趋势和挑战

随着围棋AI技术的不断演进,未来围棋AI的发展趋势和挑战也日渐成为行业关注的焦点。本章将深入探讨围棋AI在技术、应用和伦理等方面的未来动向。

6.1 技术进步带来的可能性

围棋AI技术的不断进步意味着未来的AI将具有更强的学习能力和更高的决策水平。通过深度学习和强化学习的不断优化,AI有望在不依赖人类棋谱的情况下进行自我学习和进化。

graph LR
    A[围棋AI现状] --> B[深度学习]
    B --> C[强化学习]
    C --> D[自我学习和进化]

6.2 应用场景的拓展

围棋AI不仅仅局限于下棋本身,其应用范围将越来越广泛。从教育培训到游戏娱乐,围棋AI都有可能成为改变这些领域的关键力量。

6.3 伦理和道德的考量

随着围棋AI的普及,如何确保其开发和应用符合伦理道德标准成为了一个不容忽视的问题。确保技术在不损害人类利益的前提下发展是未来AI领域必须面对的挑战。

### AI伦理问题的几个关键点

- **公平性**:确保AI系统的决策过程不歧视任何特定的用户群体。
- **透明度**:提高AI决策过程的透明度,让用户了解AI的工作原理和决策依据。
- **责任归属**:明确在AI系统出现错误时的责任归属问题。

6.4 持续优化和适应新规则

随着围棋规则的更新或变化,围棋AI也必须持续进行优化和适应。比如,对于新型的围棋赛制或者棋盘规则的变更,AI需要快速适应并进行相应的算法调整。

6.5 与其他AI领域的交叉融合

围棋AI的发展不仅仅是孤立的,它还将与其他AI领域如自然语言处理、计算机视觉等进行更深入的交叉融合,共同推动整体AI技术的进步。

6.6 人工智能与人类智慧的协同

未来围棋AI的发展,将更加注重人工智能与人类智慧的协同作用。通过AI辅助人类棋手进行训练和比赛,两者可以实现互补,共同提升围棋艺术的水平。

在本章中,我们探讨了围棋AI未来的发展方向以及可能面临的挑战。这些内容为围棋AI技术的前行提供了路线图,并为行业内外的专业人士和爱好者提供了宝贵的信息和启示。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:AI围棋结合了人工智能与传统围棋艺术,尤其以AlphaGo为代表,在竞技与理论研究上都取得了显著成就。深度学习与蒙特卡洛树搜索等算法让AI围棋得以通过自我学习不断提升棋艺。开源项目如Leela Zero、用户界面友好的分析软件Sabaki以及围棋复盘伴侣Goreviewpartner,都为围棋爱好者和研究者提供了深入探索AI在围棋领域应用的工具。本文档集合了包括安装指南、软件使用说明及各种围棋AI相关资源的链接,旨在为围棋爱好者提供一个完整的AI围棋学习平台。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

内容概要:本文将金属腐蚀现象比作游戏角色受到持续伤害(debuff),并采用浓度迁移和损伤方程来建模这一过程。文中首先介绍了浓度迁移的概念,将其比喻为游戏中使角色持续掉血的毒雾效果,并展示了如何利用Numpy矩阵存储浓度场以及通过卷积操作实现浓度扩散。接着引入了损伤方程,用于评估材料随时间累积的损伤程度,同时考虑到材料自身的抗性特性。作者还提供了完整的Python代码示例,演示了如何在一个二维网格环境中模拟24小时内金属表面发生的腐蚀变化,最终得到类似珊瑚状分形结构的腐蚀形态。此外,文章提到可以通过调整模型参数如腐蚀速率、材料抗性等,使得模拟更加贴近实际情况。 适合人群:对材料科学、物理化学感兴趣的科研工作者和技术爱好者,尤其是那些希望通过编程手段深入理解金属腐蚀机制的人群。 使用场景及目标:适用于希望借助数值模拟方法研究金属腐蚀行为的研究人员;可用于教学目的,帮助学生更好地掌握相关理论知识;也可作为工程项目前期评估工具,预测不同条件下金属构件可能遭受的腐蚀损害。 阅读建议:由于文中涉及较多数学公式和编程细节,建议读者具备一定的Python编程基础以及对线性代数有一定了解。对于想要进一步探索该领域的学者来说,可以尝试修改现有代码中的参数设置或者扩展模型维度,从而获得更丰富的研究成果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值