数学表达式魔训day2

二元关系

1.稍微复杂一点的关系: ⊆ \subseteq
U \mathbf{U} U = { 1 , 2 } \{1, 2\} {1,2}
A = 2 U = { ∅ , { 1 } , { 2 } , { 1 , 2 } } \mathcal{A} = 2^\mathbf{U} = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\} A=2U={,{1},{2},{1,2}}
R ⊆ = { ( ∅ , ∅ ) , ( ∅ , { 1 } ) , ( ∅ , { 2 } ) , ( ∅ , { 1 , 2 } ) , ( { 1 } , { 1 } ) , ( { 1 } , { 1 , 2 } ) , ( { 2 } , { 2 } ) , ( { 2 } , { 1 , 2 } ) , ( { 1 , 2 } , { 1 , 2 } ) } \mathbf{R}^{\subseteq} =\{(\emptyset, \emptyset), (\emptyset, \{1\}), (\emptyset, \{2\}), (\emptyset, \{1, 2\}), (\{1\}, \{1\}), (\{1\}, \{1, 2\}), (\{2\}, \{2\}), (\{2\}, \{1, 2\}), (\{1, 2\}, \{1, 2\})\} R={(,),(,{1}),(,{2}),(,{1,2}),({1},{1}),({1},{1,2}),({2},{2}),({2},{1,2}),({1,2},{1,2})}
注: A \mathcal{A} A U \mathbf{U} U的幂集,这里集合里的每一个元素都是一个有序对,每个有序对的第一个元素是第二个元素的子集.
2.二元运算关系
正闭包: R + = ⋃ i = 1 ∣ A ∣ R i \mathbf{R}^{+} = \bigcup_{i = 1}^{\vert \mathbf{A} \vert} \mathbf{R}^i R+=i=1ARi.
克林闭包: R ∗ = R + ∪ A 0 \mathbf{R}^* = \mathbf{R}^+ \cup \mathbf{A}^0 R=R+A0 , 其中 A 0 = { ( x , x ) ∣ x ∈ A } \mathbf{A}^0= \{(x, x) \vert x \in A\} A0={(x,x)xA} .
克林闭包包含空串,正闭包不包含.

作业:

1.令 A = { 1 , 2 , 5 , 8 , 9 } \mathbf{A} = \{1, 2, 5, 8, 9\} A={1,2,5,8,9}, 写出 A \mathbf{A} A 上的 “模 2 同余” 关系及相应的划分.

答: R = { ( a , b ) ∈ A × A ∣ a m o d      2 = b m o d      2 } \mathbf{R}=\{(a,b) \in \mathbf{A} \times \mathbf{A} |a \mod \ 2 = b\mod \ 2 \} R={(a,b)A×Aamod 2=bmod 2}.
R = { ( 1 , 1 ) , ( 1 , 5 ) , ( 1 , 9 ) , ( 5 , 1 ) , ( 5 , 5 ) , ( 5 , 9 ) , ( 9 , 1 ) , ( 9 , 5 ) , ( 9 , 9 ) , ( 2 , 2 ) , ( 2 , 8 ) , ( 8 , 2 ) , ( 8 , 8 ) } \mathbf{R}=\{ (1, 1), (1, 5),(1, 9), (5, 1), (5,5), (5, 9), (9,1), (9, 5),(9,9),(2,2), (2, 8), (8,2), (8,8)\} R={(1,1),(1,5),(1,9),(5,1),(5,5),(5,9),(9,1),(9,5),(9,9),(2,2),(2,8),(8,2),(8,8)}
P = { { 1 , 5 , 9 } , { 2 , 8 } } \mathcal{P}=\{\{1,5,9\}, \{2,8\}\} P={{1,5,9},{2,8}}

2. A = { 1 , 2 , 5 , 8 , 9 } \mathbf{A} = \{1, 2, 5, 8, 9\} A={1,2,5,8,9}, 自己给定两个关系 R 1 \mathbf{R}_1 R1 R 2 \mathbf{R}_2 R2, 并计算 R 1 ∘ R 2 \mathbf{R}_1 \circ \mathbf{R}_2 R1R2, R 1 + \mathbf{R}_1^+ R1+, R 1 ∗ \mathbf{R}_1^* R1.

答:令 R 1 = { ( 1 , 5 ) , ( 1 , 9 ) , ( 1 , 8 ) , ( 8 , 2 ) , ( 5 , 9 ) , ( 2 , 9 ) } \mathbf{R}_1= \{(1, 5),(1,9), (1,8), (8,2), (5,9), (2,9)\} R1={(1,5),(1,9),(1,8),(8,2),(5,9),(2,9)}, R 2 = { ( 5 , 5 ) , ( 2 , 2 ) , ( 8 , 2 ) } \mathbf{R}_2= \{(5,5),(2,2),(8,2)\} R2={(5,5),(2,2),(8,2)}
R 1 ∘ R 2 = { ( 1 , 5 ) , ( 8 , 2 ) , ( 1 , 2 ) } \mathbf{R}_1 \circ \mathbf{R}_2= \{ (1,5),(8,2),(1,2)\} R1R2={(1,5),(8,2),(1,2)}
R 1 2 = R 1 ∘ R 1 = { ( 1 , 2 ) , ( 1 , 9 ) , ( 8 , 9 ) } \mathbf{R}_1^2=\mathbf{R}_1 \circ \mathbf{R}_1= \{ (1,2),(1,9), (8,9)\} R12=R1R1={(1,2),(1,9),(8,9)}
R 1 3 = R 1 2 ∘ R 1 = { ( 1 , 9 ) } \mathbf{R}_1^3=\mathbf{R}_1^2\circ \mathbf{R}_1= \{ (1,9)\} R13=R12R1={(1,9)}
R 1 4 = R 1 3 ∘ R 1 = ∅ \mathbf{R}_1^4=\mathbf{R}_1^3\circ \mathbf{R}_1= \emptyset R14=R13R1=
R 1 5 = R 1 4 ∘ R 1 = ∅ \mathbf{R}_1^5=\mathbf{R}_1^4\circ \mathbf{R}_1= \emptyset R15=R14R1=
R 1 + = ⋃ i = 1 ∣ A ∣ R 1 i = R 1 1 ⋃ R 1 2 ⋃ R 1 3 ⋃ R 1 4 ⋃ R 1 5 = { ( 1 , 5 ) , ( 1 , 9 ) , ( 1 , 8 ) , ( 8 , 2 ) , ( 5 , 9 ) , ( 2 , 9 ) , ( 1 , 2 ) , ( 8 , 9 ) } \mathbf{R}_1^+=\mathbf{\bigcup}_{i=1}^{|\mathbf{A}|}\mathbf{R}_1^i=\mathbf{R}_1^1 \bigcup \mathbf{R}_1^2 \bigcup \mathbf{R}_1^3 \bigcup \mathbf{R}_1^4 \bigcup \mathbf{R}_1^5= \{ (1, 5),(1,9), (1,8), (8,2), (5,9), (2,9), (1,2), (8,9)\} R1+=i=1AR1i=R11R12R13R14R15={(1,5),(1,9),(1,8),(8,2),(5,9),(2,9),(1,2),(8,9)} .
R 1 ∗ = R 1 + ⋃ A 0 , A 0 = { ( x , x ) ∣ x ∈ A } \mathbf{R}_1^*=\mathbf{R}_1^+ \bigcup \mathbf{A}^0, \mathbf{A}^0=\{(x,x)|x\in \mathbf{A}\} R1=R1+A0,A0={(x,x)xA}
R 1 ∗ = { ( 1 , 5 ) , ( 1 , 9 ) , ( 1 , 8 ) , ( 8 , 2 ) , ( 5 , 9 ) , ( 2 , 9 ) , ( 1 , 2 ) , ( 8 , 9 ) , ( 1 , 1 ) , ( 2 , 2 ) , ( 5 , 5 ) , ( 8 , 8 ) , ( 9 , 9 ) } \mathbf{R}_1^*= \{ (1, 5),(1,9), (1,8), (8,2), (5,9), (2,9), (1,2), (8,9), (1,1), (2,2), (5,5), (8,8), (9,9)\} R1={(1,5),(1,9),(1,8),(8,2),(5,9),(2,9),(1,2),(8,9),(1,1),(2,2),(5,5),(8,8),(9,9)} .

3.查阅粗糙集上下近似的定义并大致描述.

答:粗糙集上近似描述的是,可能的范围;下近似描述的是比较精确的范围.
一个数据集当中包含很多个对象,也含有不同的属性.每个对象含有不同的多个属性.按照不同的属性可以将对象分类,同一对象可能出现在好几个属性分类里面.上近似描述的就是多种属性求并集所得到的对象集合或者说范围,下近似描述的是多种属性求交集所得到的对象集合,里面的对象一定含有求交集的几个属性.

4.举例说明你对函数的认识.

答:函数有定义域与值域和映射关系, 且对于定义域的每个值, 在值域中有且仅有一个值与其对应.在函数中只存在一对一或者多对一的情况不存在一对多或者多对多的情况.
例如: y = 4 x y=4x y=4x, x ∈ R x\in R xR 是一对一的映射关系,这个是函数.
y 2 = 4 x , x ≥ 0 y^2=4x,x\geq0 y2=4x,x0 不是函数,存在一个 x x x对应两个 y y y的情况.
y = f ( x , y ) , x > 0 , y > 0 y=f(x,y),x>0,y>0 y=f(x,y),x>0,y>0 是函数,这里自变量是两个,但不存在一对多的情况.

5.自己给定一个矩阵并计算其各种范数.

答:令 X = [ 1 2 3 4 ] \mathbf{X}= \left[ \begin{matrix} 1&2\\ 3&4\\ \end{matrix} \right] X=[1324]
∥ X ∥ 0 = 4 \|\mathbf{X}\|_0=4 X0=4
∥ X ∥ 1 = 10 \|\mathbf{X}\|_1=10 X1=10
∥ X ∥ 2 = 10 \|\mathbf{X}\|_2=\sqrt[]{10} X2=10
∥ X ∥ ∞ = 4 \|\mathbf{X}\|_\infty =4 X=4.

6.解释 推荐系统: 问题、算法与研究思路 2.1 中的优化目标 min ⁡ ∑ ( i , j ) ∈ Ω ( f ( x i , t i ) − r i j ) 2 \min \sum \limits_{(i,j)\in \Omega} (f(\mathbf{x}_i,\mathbf{t}_i)-r_{ij})^2 min(i,j)Ω(f(xi,ti)rij)2 各符号及含义.

答:这是使用最小二乘法求参数过程,整个算式应该在求最小误差的平方和.
min代表取最小值; ∑ ( i , j ) ∈ Ω \sum \limits_{(i,j)\in \Omega} (i,j)Ω这个是商品属性和用户矩阵的一个范围的误差累加; f ( x i , t i ) f(\mathbf{x}_i,\mathbf{t}_i) f(xi,ti) 这个代表预测值; r i j r_{ij} rij代表实际值; ( f ( x i , t i ) − r i j ) 2 (f(\mathbf{x}_i,\mathbf{t}_i)-r_{ij})^2 (f(xi,ti)rij)2代表实际值与预测值的误差的平方.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值