深度学习Transformer框架

Transformer是一种2017年提出的深度学习框架,擅长处理序列数据,尤其在NLP领域表现出色。其并行处理能力和self-attention机制使其在处理长序列时效率高且具有可解释性,成为许多先进NLP任务的首选模型。
摘要由CSDN通过智能技术生成

Transformer 是一种深度学习框架,专门用于处理序列数据。它是 2017 年由 Vaswani 等人提出的,在 NLP 领域取得了很大的成功。

Transformer 的主要优势在于它可以并行地处理输入序列中的所有元素,并且不依赖于序列长度。它使用了 self-attention 机制,可以在序列中不同位置的元素之间建立联系。这使得 Transformer 在许多 NLP 任务中取得了最先进的性能。

此外,Transformer 还具有较高的可解释性,因为 self-attention 机制可以帮助我们理解模型如何处理序列中的数据。

总的来说,Transformer 是 NLP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值